

Moving in and Mobilizing: Gentrifiers and Local Political Participation

Allison Verrilli

September 30, 2025

Abstract

Does gentrification shape local political participation? Prior research details how gentrification can demobilize long-term residents but less is known about how it may shape the political participation of gentrifiers themselves. I argue that gentrifiers' positionality, personally privileged yet living in historically disinvested neighborhoods, motivates them to engage politically in order to reshape their surroundings according to their own preferences. Using administrative voting records from Austin, TX, and Durham, NC, I find that gentrifiers increase their turnout after moving and vote at higher rates than both long-term residents of gentrifying areas and residents of more affluent neighborhoods. Furthermore, these patterns are racialized: in Durham, they are driven by white gentrifiers, and in both cities, turnout is especially high among gentrifiers who move into more non-white tracts. To explore potential mechanisms, I analyze community survey data from both cities which reveals that gentrifiers combine negative views of their neighborhoods with strong political efficacy. These findings carry implications for understanding how privilege and place shape local political participation.

Introduction

Over the past several decades, gentrification has transformed urban neighborhoods and the demography of cities writ large. As the forces of deindustrialization and globalization fueled a transition to service-oriented economies, metropolitan areas saw a rise in demand for urban living amidst an increasingly competitive housing market (Guerrieri, Hartley, and Hurst 2013; Couture et al. 2024; Blasius and Friedrichs 2019). This contributed to the movement of wealthier, often white residents, commonly referred to as gentrifiers, into previously disinvested and racially segregated spaces. Existing scholarship has documented gentrifier efforts to transform their new neighborhoods to match their standards of living through their consumption patterns (Grier and Perry 2018), social interactions (Hyra 2017), and demand for policing (Beck 2020; Laniyonu 2018; Verrilli 2025). While these studies document important gentrifier practices, they do not investigate gentrifiers' explicitly political behavior. Moreover, existing theories of political participation do not provide clear predictions regarding gentrifier political behavior or, more broadly, expectations for the political behavior of relatively privileged residents in less resourced spaces.

This article unpacks the relationship between gentrification and political participation. It asks, do gentrifiers turnout at higher rates particularly in local elections relative to long-term residents of gentrifying neighborhoods *and* residents of more traditionally affluent spaces? Does movement into gentrifying spaces cause higher turnout? And what role does race play—is this behavior unique to white gentrifiers or shaped by the racial composition of gentrifying neighborhoods?

Canonical theories of local political participation provide conflicting predictions about the political behavior of gentrifiers. The correlation between socio-economic status and political participation has been well documented (Verba and Norman 1972; Brady and Scholzman 1995; Leighley and Oser 2018) and is particularly strong at the local level where higher socio-economic status individuals can better navigate low information electoral contests and fragmented, complex systems (Einstein, Glick, and Palmer 2019; Sahn 2024). However, this

theory largely assumes congruence between one's personal socio-economic status and their surrounding neighborhood. For gentrifiers, there is often a contrast between their personal material resources and the resources of the surrounding area. It is unclear then to what extent resourced-based theories of participation can fully explain gentrifier behavior.

Alternative theories of participation highlight the influence of neighborhood context, finding strong correlation between political participation and factors such as social capital, community ties, and proximity to in-group members (Putnam 2000; Oliver 2001; Huckfeldt 1986; Wong 2008). Furthermore, research has found that residential mobility is negatively related to political participation in that it increases administrative burdens (Highton 2000) and weakens social capital, at least initially (Oishi et al. 2007; Ruef and Kwon 2016). Gentrifiers, as newer arrivals to their communities and distinct in many ways from existing residents, often have lower social cohesion or community embeddedness, yet they possess certain resources that their neighbors do not have access to. This again complicates traditional expectations surrounding community ties and participation.

Finally, theories of racial threat predict that white gentrifiers will perceive greater danger when living in majority non-white neighborhoods and respond politically (Enos 2016; Trounstine 2018; Hamel and Wilcox-Archuleta 2022). However, within gentrifying neighborhoods, traditional group size dynamics have been inverted and numeric racial majority groups are often non-white with the dominant group, white gentrifiers, as the growing population. Additionally, there is evidence that white gentrifiers self-select into more ethno-racially diverse neighborhoods (Ellen and O'Regan 2011; Brown-Saracino 2009), making expectations about gentrifier behavior less straightforward. In sum, gentrifiers, personally well-resourced and often white, but lacking deep neighborhood ties and living in less affluent, more non-white spaces, complicate traditional theories of political participation.

In addition to contrasting expectations, the transitory nature of gentrification presents empirical challenges to testing the relationship between gentrification and political participation. Gentrification describes a period of neighborhood transition where many factors are in

flux, making it difficult to pinpoint and trace the behavior of residents over time. Existing studies have largely tested the relationship between gentrification and political participation indirectly, finding that displacement stemming from gentrification can decrease political participation among low-income voters if they lose their housing or diminish the political power of non-white racial groups (Chou and Dancygier 2021; Lee and Velez 2024). Knotts and Haspel (2006) test the relationship directly and find that long-standing voters in highly gentrified neighborhoods are less likely to vote relative to those in less gentrifying areas. However, due to limited data, they cannot identify and thus assess the political behavior of new movers to gentrifying areas. These data limitations and empirical challenges mean that there are still no direct tests of the link between gentrification and turnout, particularly among gentrifiers, at the individual-level.

I argue that gentrifiers' positionality within previously disinvested spaces generates heightened levels of local electoral participation. Dissatisfied with the infrastructure and amenities around them and empowered by relative resource advantages, gentrifiers actively participate in politics, particularly at the local level, as a means of reshaping their new neighborhoods to meet their economic and cultural preferences. For white gentrifiers in predominantly non-white neighborhoods, turnout is even higher as racial stereotypes about the perceived disorder of majority Black or Latino neighborhoods contribute to high levels of participation. The historic disinvestment in gentrifying neighborhoods makes gentrifiers' political participation paramount to increasing investment and infrastructure within their neighborhood relative to even residents of traditionally affluent neighborhoods (*affluent-area residents*), while their whiteness and economic resource advantages result in greater participation relative to long-term residents within gentrifying neighborhoods (*long-term residents*).

To test this argument, I combine administrative voting records from Travis County, TX and Durham County, NC with American Community Survey (*ACS*) data from 2014-2022 to identify gentrifiers and other categories of urban residents and simultaneously trace their movement and voting behavior. Using a difference-in-differences design, I match gentrifiers

with other movers based on when they moved and the socio-economic characteristics of their pre-move tracts to isolate the effect of moving on local electoral participation. I find that moving into a gentrifying tract increases the probability of voting in a local election for gentrifiers relative to other movers who move from similar tracts in the same year. I then observe that gentrifiers are more likely to vote in local elections relative to both long-term residents of gentrifying areas and affluent-area residents. Finally, I find evidence that these results are racialized. In Durham, they are driven by white gentrifiers and in both cities, the likelihood of gentrifier turnout increases after moving into more non-white neighborhoods. To explore the mechanisms behind this behavior, I use community survey data from Austin and Durham and discover that gentrifiers hold more negative evaluations about the conditions in their neighborhood while simultaneously demonstrating a high likelihood of contacting local government. Taken together these findings demonstrate how privileged residents respond to perceived neighborhood disadvantage with heightened political engagement.

This paper contributes theoretically and empirically to understanding how gentrification unfolds. Heightened political engagement by gentrifiers may act as an accelerant to the gentrification process driving increased government attention and investment in response to a growing and active community voting bloc. Additionally, to the extent that gentrifiers' hold distinct political attitudes from the long-term residents of gentrifying neighborhoods, their heightened engagement could shift how local governments perceive neighborhood priorities and even if temporally bounded, could give them outsize influence in local politics. Empirically, this paper introduces a novel approach to identifying and classifying distinct types of urban residents. This allows for a highly granular, individual-level analysis of how movement and neighborhood context influence voting behavior over time.

In addition to elucidating the micro-level politics of gentrification, this paper also contributes to the literature on political participation by further contextualizing resourced-based theories of participation. Understanding individual political participation as a function of not just personal material wealth but also of surrounding context, provides new insight into

how the interaction of privilege and place shapes political participation. This understanding is particularly salient as housing costs continue to rise and better-resourced individuals increasingly turn to previously disadvantaged places for greater housing choice. Ultimately, findings from this paper suggest that gentrifiers are a politically significant group in local politics and that studying their behavior allows political scientists to refine existing theories of urban inequality through the lens of place-based identity and privilege, which in turn has larger implications for our understanding of participation and representation.

Gentrification & Political Participation

Gentrifier Characteristics & Behavior

Prior literature on the relationship between gentrification and individual-level behavior focuses largely on the consequences of physical and cultural displacement for the participation of long-term residents in gentrifying areas. Some ethnographies find pockets of community resistance (Robinson 1995), but most find gentrification to be demobilizing for long-term residents, particularly lower-income, Black residents (Newman and Pearson-Merkowitz 2016; Knotts and Haspel 2006; Michener 2013). This work is paramount to understanding how communities respond to the negative externalities wrought by gentrification, yet it also treats gentrification as a largely immutable force that generates flight or fight responses. This overlooks the possibility that residing in a gentrifying neighborhood shapes political behavior not only for existing residents but also for newer in-movers. That gentrification may in fact mobilize residents not in opposition to the process but in conjunction with it, forming an integral part of how it proceeds as opposed to solely a response to it.

Gentrifiers typically have higher incomes, college degrees, and professional jobs compared to long-term residents of gentrifying neighborhoods (Blasius and Friedrichs 2019; Clay 2017; Florida 2002; Ley 1997; Hwang and Lin 2016). Rising housing costs (Desmond 2022; Feiveson and Schreiner 2024; DeSilver 2024) have drawn these often younger residents to gentrifying

areas offering both urban amenities and relative affordability (Guerrieri, Hartley, and Hurst 2013; Couture et al. 2024; Blasius and Friedrichs 2019). The appeal of these neighborhoods is rooted in decades of disinvestment in Black communities through redlining, racial covenants, and other practices that devalued urban housing while channeling investment to white suburbs (Rucks-Ahidiana 2021; Rothstein 2017; Hyra 2008; Dantzler 2021; Howell and Korver-Glenn 2021). As a result, gentrifiers occupy privileged positions in historically disadvantaged, often Black and Latino neighborhoods, and complicate traditional theories of participation.

Gentrification scholars have detailed the consequences of gentrifier privilege and preferences for the neighborhoods they enter (Zukin 2009; Hyra 2017; Freeman 2006). For example, Zukin (2009) describes how gentrifiers in Williamsburg, Brooklyn forwent the bodegas or small stores owned by long-term, working-class Puerto Rican or Hasidic Jewish residents in favor of more upscale grocery stores or coffee shops, eventually transforming the economic landscape of the neighborhood. Parekh (2015)'s ethnographic research in New Orleans details how gentrifiers' expectations surrounding the use of public space and white racial biases activated by living in neighborhoods with significant Black populations generated a demand for policing to remedy perceived danger and disorder in the neighborhood. For lower-income groups, who possess fewer resources and thus limited residential mobility, place-based communities are important sources of support and reciprocity (Betancur 2002; Hyra 2008). This rich qualitative evidence demonstrates how gentrifier preferences and power disrupt these communities and overwhelm the preferences of existing lower-income, residents of color and reorganize the neighborhood around gentrifier tastes. Yet whether this pattern extends to more explicitly political behavior remains underexplored.

Gentrifier Political Participation

The existing literature leaves open the possibility that gentrifier behavior, while potentially disruptive to existing communities, may not extend to the explicitly political realm or that

gentrifier participation is simply a function of economic resources or racial identity. I argue that gentrifiers do engage politically, as a function of not just their personal material resources but how those resources intersect with their presence in previously disinvested spaces

Gentrifiers presence in gentrifying spaces distinguishes them from individuals of similar socio-economic backgrounds in non-gentrifying areas. Traditionally affluent neighborhoods have years or decades of investment providing advantages in public safety, schools, and infrastructure (Solari 2012; Souza Briggs and Keys 2009; Albrecht and Albrecht 2007; Swanstrom, Dreier, and Mollenkopf 2002). Research demonstrates that residents in these neighborhoods are often opposed to government intervention, seeing it as a threat to their own autonomy, resources, and power (Trounstine 2020) even going so far as to secede from city jurisdictions (Jones 2024; Mock 2023). These movements are linked first to the longstanding segregation in American society and the attempts of predominantly white suburbs to maintain segregated school districts and social services. They are also linked to a preference for privatization and exclusivity as a means of safeguarding wealth. In contrast, gentrifying neighborhoods typically lack this base of resources, making the need for gentrifier political action greater.

A lack of longstanding resources in gentrifying neighborhoods shifts resident priorities to building up investment, attention, and quality services. For gentrifiers, movement into these areas is often linked to perceived economic or cultural opportunities such as greater housing choice or proximity to business districts, entertainment, and public transit (Florida 2002; Brown-Saracino 2009). Thus for gentrifiers, certain disadvantages in public services or infrastructure are markers of potential, that with investment and time will improve. This drives gentrifier political participation, particularly in the local realm, aimed at garnering the attention of local officials and even private actors. While this does not preclude them from pursuing exclusionary outcomes, it nevertheless for a certain time, makes their political participation more consistent and proactive relative to the often more reactive participation of affluent-area residents.

The racial composition of gentrifying neighborhoods also plays a central role in gentrifier

political participation. Gentrifiers, often white residents, move into neighborhoods with traditionally greater levels of Black and sometimes Latino residents. Racial threat has been shown to be a salient force animating white voters' participation in local politics (Enos 2016; Trounstine 2018; Hamel and Wilcox-Archuleta 2022). However, prior work finds that gentrifiers often express a desire to live in racially diverse communities (Ellen and O'Regan 2011; Grier and Perry 2018; Brown-Saracino 2009), calling into question how well these traditional theories can explain gentrifier behavior. My theory makes the case that even as white gentrifiers may express a desire for neighborhood racial diversity, persistent racial stereotypes lead them to make associations between majority non-white communities and greater levels of disorder or crime absent objective measures (Quillian and Pager 2001; Parekh 2015). Thus, residing in neighborhoods with large populations of Black and Latino residents also makes gentrifiers more likely to participate in local politics as it increases their perception of neighborhood disorder and desire to reshape their surroundings.

While gentrifiers' location in previously disinvested neighborhoods helps explain their participation vis-à-vis affluent-area residents, it is their personal positions of race-class privilege relative to long-term residents that explain their participation. Moving into a gentrifying neighborhood is seldom an explicitly political choice, but it nonetheless carries political consequences. All residents generally seek neighborhood safety, functional public services, economic opportunity, and freedom from discrimination, though they may prioritize these differently or use public space in distinct ways. The key distinction lies in their resources and experiences with government responsiveness. There are powerful links between government responsiveness and internal and external political efficacy (Schumacher and Öhberg 2020) (Singh & Dunn 2015). Thus, gentrifiers relative socio-economic power not only gives them greater resources but also higher levels of trust that government will be responsive to their demands. In contrast, long-term residents of disinvested neighborhoods have endured decades of neglect, from slow public safety responses (Seim et al. 2018) and underfunded schools (Nuamah and Ogorzalek 2021; Institute 2022) to inadequate drinking water (Mohai

2018), crumbling infrastructure (Nicoletti, Sirenko, and Verma 2023; Hirsch et al. 2017), and government inaction during crises (Bullard 2008). These persistent failures erode trust in government, reinforcing disparities in political participation between gentrifiers and long-term residents.

Gentrifiers' heightened political participation is likely to be most consequential in local politics, where their concerns about neighborhood conditions and local political issues are most engaged. The specific elements central to gentrification: public infrastructure, city services, housing development decisions, and many more, are all highly localized issues. While concurrent federal, state, and local elections may allow gentrifier participation to influence broader electoral outcomes, the most visible and meaningful effects are expected at the local level, where their preferences and demands are most immediately expressed. Even as local politics become increasingly nationalized, gentrification remains a valuable context for examining how neighborhood-level conditions shape political attitudes and participation.

In sum, the historic disinvestment in gentrifying neighborhoods, coupled with the absence of strong community organizations or interest groups, makes gentrifier political participation essential to elevating their neighborhood's economic standing relative to even residents of traditionally affluent neighborhoods. Furthermore, gentrifiers' race-class privilege provides both resource advantages and a greater sense of political efficacy compared to long-term residents. Ultimately, gentrifiers' heightened political engagement stems from the intersection of personal wealth and a broader landscape of disinvestment and weak public infrastructure.

Theoretical Expectations

Gentrifiers, often better resourced and more privileged than the areas that they move into, are motivated to participate politically in order to garner increased attention and resources to their neighborhoods. For gentrifiers, gentrifying neighborhoods offer more affordable housing in central city areas with the promise of economic development, yet they often do not have

the relative quality of public infrastructure and development of more affluent areas due to historical disinvestment. This motivates heightened political participation by gentrifiers after they move into their new neighborhoods. Thus:

H1: Movement into a gentrifying neighborhood will increase gentrifiers' likelihood of turnout relative to movers who move into non-gentrifying tracts.

The juxtaposition of gentrifiers' personal resources and the often under-resourced communities they move into motivates their political participation relative to other types of urban residents. Relative to residents of more affluent neighborhoods, gentrifiers perceive greater disadvantage in their surrounding areas and cannot rely on existing organizations or infrastructure to advocate on their behalf, thus they increase their local political participation to attract attention and investment to their neighborhoods. Concurrently, gentrifiers' socio-economic and racial status provide them with the necessary resources and institutional trust efficacy to engage in local politics relative to long-term residents of existing neighborhoods. Together, this produces hypothesis 2:

H2: Gentrifiers post-move will have higher turnout rates relative to residents of more traditionally affluent tracts and to long-term residents of gentrifying tracts

Race is central to both gentrifier perceptions of their surroundings and their own position within gentrifying neighborhoods. Following the literature on proximity to majority Black neighborhoods and perceived racial threat among whites, gentrifiers' presence among greater numbers Black and Latino residents in gentrifying neighborhoods should increase their perceived disorder and sense of danger. This will further heighten turnout among gentrifiers, particularly white gentrifiers. This produces hypothesis 3.

H3: Gentrifiers will be more likely to turnout when moving into more heavily Black-Latino tracts.

Case Selection

I test my hypotheses in the context of Austin, TX and Durham, NC. Both are rapidly gentrifying contexts, with development fueled in part by growing science and technology industries and proximity to major research institutions. Both have seen dramatic increases in the number of new residents moving to the area over the past decade, particularly white residents moving into the areas closer to downtown (Fisher 2025; Vaughan and Eanes 2018). However, they differ in key ways that allow me to test gentrifier political behavior in distinct gentrifying contexts. Durham is a smaller, more compact city with strong Black cultural heritage stemming from its strong middle class Black population and participation in the Civil Rights Movement (Brown 2009; McKinney Jr 2024; Oglesby 2020). A strong black middle class and a history of political activism influences my analysis in two distinct ways. First, a more robust middle-class may increase the number of black voters in my sample categorized as gentrifiers, as increased capital among Black Durham residents may push them to enter gentrifying neighborhoods at greater rates than in Austin. This allows me to test for different levels of participation among gentrifiers of different racial identities in Durham. Second, a history of strong political activism could lead to greater organizing and resistance to displacement among long-term residents within gentrifying neighborhoods, which may narrow the engagement gap between gentrifiers and long-term residents relative to Austin.

Austin is a larger, more sprawling city than Durham, with a greater Latino population and a more advanced stage of gentrification. Many Black residents in Austin have already been displaced, reducing their numbers and political influence compared to Durham. While Latino communities on Austin's East Side have histories of activism, their engagement has been largely non-electoral, and mixed immigration status further complicates sustained participation. In North Austin, gentrifying areas tend to have more long-term white residents, making gentrification there more class-based. As a result, political participation among long-term residents of color in Austin may be lower than in Durham.

Including both cities allows me to assess how broadly my findings apply across distinct racial, geographic, and historical gentrification contexts. For example, do gentrifiers show greater political engagement in cities where gentrification is more dispersed and less downtown-centered? What about in places where more gentrifiers are Black? These cases also help refine my theory to capture contextual nuances. In Durham, with its legacy of Black political activism in neighborhoods now gentrifying, I expect smaller participation gaps between gentrifiers and long-term residents than in Austin. Still, I anticipate my theory of heightened gentrifier participation will hold in both cities, as the main drivers of participation, gentrifiers' resource advantages and their desire to influence neighborhood change, are consistent across contexts.

The core of my theory suggests that we should see similar trends across other city contexts outside of Austin and Durham, yet for this study, I focus on these two cities. I do not investigate longer-established cases such as New York or San Francisco, as gentrification began decades earlier and thus more recent trends tend to reflect patterns of super-gentrification rather than initial development. Additionally, unlike other recently gentrifying cities such as Denver, Washington, D.C., and Philadelphia, both Durham and Austin offer access to local community survey data that include geolocation information for respondents and match the years of the available voter file data. This survey data allows me to evaluate some of the theoretical mechanisms behind gentrifier political participation. While future research can and should expand to additional cities undergoing similar transformations, Durham and Austin provide a uniquely advantageous foundation for this initial study due to their recent gentrification timelines and the availability of highly granular political and demographic data.

Measuring Gentrification

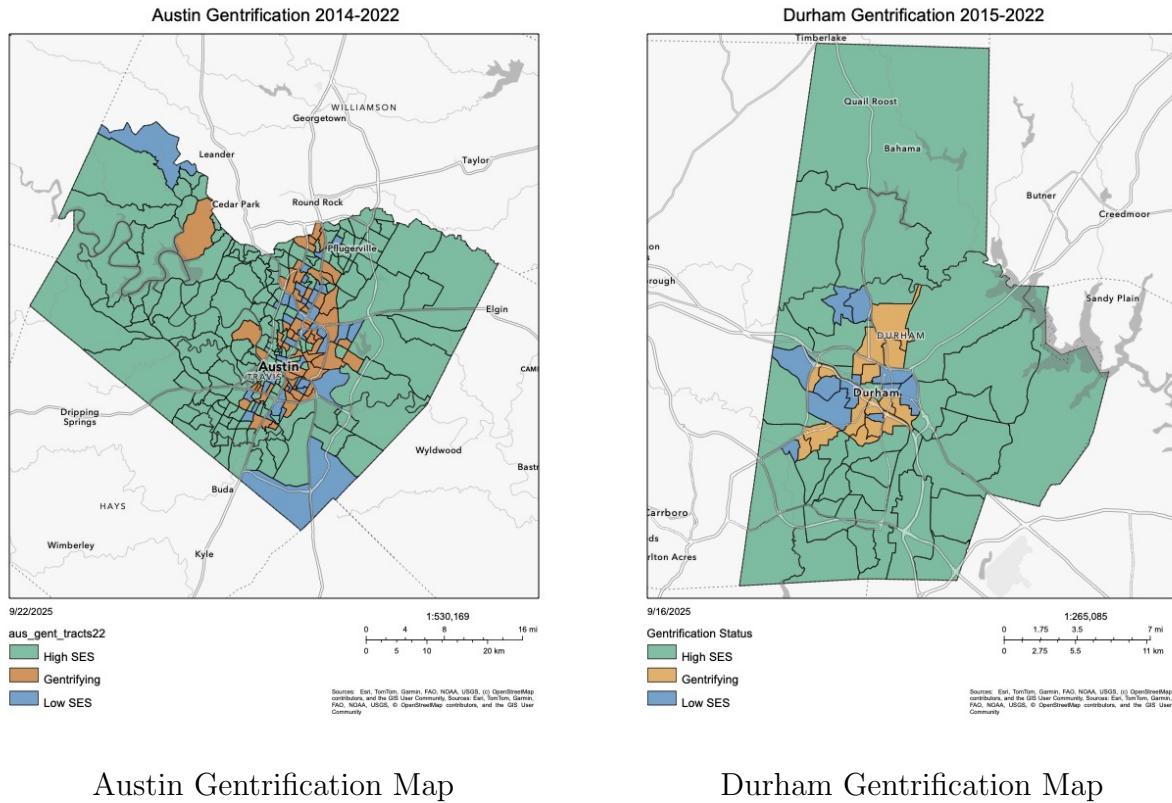
Research Design

In order to assess the relationship between gentrification and local political participation, I use L2 voter file data from the Travis County, TX from 2014-2022 and publicly available voter file data from the state of North Carolina from 2015-2022. Both are comprised of annual snapshots allowing me to locate voters at their addresses each year and identify movement through address changes. Previous quantitative work on gentrification has largely captured gentrifiers at the neighborhood level, identifying the growth in white, college-educated residents to an area or the construction of more expensive housing units. Nelsen, Ramanathan, and Ogorzalek (2023) create an individual-level measure with original survey data using self-reported demographic data and length of residence to identify gentrifiers within their sample. However, this measure limits the ability to assess how gentrifying neighborhoods themselves influence behavior, as it cannot distinguish whether a respondent moved from a non-gentrifying area or compare behavior before and after relocation. In contrast, my measure more precisely isolates the influence of living in a gentrifying neighborhood and can causally identify how movement influences voter behavior across different resident types.

To classify the gentrification status of each neighborhood, I calculate changes in ACS data from 2014(2015) to 2022 to classify census tracts as eligible or ineligible to gentrify in the first year of the range. While there's no consensus on how to measure gentrification, most studies use census data to track socio-economic changes. The debate continues over whether race should be included in these measures (Fallon 2021; Nelsen, Ramanathan, and Ogorzalek 2023; Lee and Velez 2024). Although race is central to gentrification due to historical racial inequity and spatial segregation, I use a measure focused solely on socio-economic changes in order to better isolate and test the role of neighborhood racial composition through moderation analyses with the percentage of Black, Latino, and nonwhite residents in gentrifying tracts.

Tracts below the city-wide median income and rent in the first year of the data range

are classified as eligible to gentrify. These tracts are then divided into three categories based on changes in the percentage of college-educated residents and median rent.¹ Tracts in the top tercile of eligible tracts for these increases and those with rent increases above the city median, are classified as gentrifying. This follows Laniyonu (2018)'s criteria for gentrification and mirrors others that have used changes in census data to classify gentrifying tracts (Freeman 2005; Zuk et al. 2018).² Tracts that are eligible in the initial year but do not meet the gentrifying threshold by the final year are classified as low SES. Tracts never eligible to gentrify are classified as high SES.³ The maps below show the gentrification status of each census tract in Austin and Durham in the final year of the data range.



¹ To calculate changes, I use the `tidycensus` package in R which pulls the 5-year ACS estimates by year (with the specified year being the last year in the range). Since these estimates aggregate data collected over a five-year period, I attribute overall differences between the 5-year estimates to the differences in the final year of the aggregation.

²Laniyonu (2018)'s measure classifies only tracts in the top tercile of changes in median rent and percent college educated as gentrified, however I include the second criteria to capture tracts that are in the earlier stages of gentrification.

³ See Appendix Table A3 and Table A4 for the distribution of tracts by gentrification status by each city.

Gentrification Status by Census Tract in Austin and Durham (2014–2022).

Austin Gentrification Map

Durham Gentrification Map

To locate voters within tracts, I geolocate the addresses from the voter file and spatially join them with census tract shapefiles by year. I then identify movers, those that changed addresses from one year to the next, and classify them into distinct resident types based on the socio-economic status (SES) of their census tracts. For movers, this is based on the SES of the tract that they moved from and the SES status of the tract they moved into, while for non-movers it is the SES status of the classification for the entirety of the time range. See Appendix Tables A5-A6 for details about the distribution of movers by city.

Dependent Variable

The key dependent variable is participation in local elections. Within Travis County, TX, there was at least one local election in every year in the sample (2014-2022). Some local elections occur concurrently with federal and state elections. In order to isolate local elec-

tions, I count participation for only the local contests that occur as standalone elections, thus turnout rates in Austin are particularly low since they measure participation only in standalone local elections in Austin. In North Carolina, the overwhelming majority of municipal elections occur every other year in off-years from federal elections. My main measure of participation is a binary measure indicating whether or not a voter participated in any local election that they were eligible for each local election year.⁴

Key Explanatory Variables

The main explanatory variable is gentrifier status. To construct the gentrifier variable, I identify individuals who moved from a higher status tract (those with a median household income above the city average) into a gentrifying tract (see above for qualifications to be categorized as a gentrifying tract).⁵ Just as in the case of measures of gentrification, there are robust debates about the inclusion of race as a criteria for being a gentrifier (Hwang 2020; Fallon 2021; Kirkland 2008). Again, I use a measure based solely on changes in SES for two primary reasons. First, this allows me to analyze any behavioral differences between white and non-white gentrifiers providing important insight into how the intersection of resource advantage and racial identity shape behavior in gentrifying neighborhoods. Second, the voter file data in Austin lacks information on the race of the voter. While I use BISG to impute the race of each voter based on their name and location, this method is not perfectly precise and often misses non-white individuals who live in predominantly white areas, some of whom likely comprise my sample of gentrifiers. In Durham, where race of voter data exists and there is more racial heterogeneity among my sample of gentrifiers (see Appendix Table A7

⁴ Some elections are limited to only voters within the city of Austin or Durham, while others are confined to only voters in certain municipalities outside of the city limits. Therefore, I calculate voter eligibility for each voter based on their municipality and then record participation for eligible voters in each election.

⁵ For my analysis of Durham, I classify gentrifiers who move from outside of Durham as gentrifiers if the median household income of the tract they move from is greater than the median household income for the city of Durham in that same year.

and A8 for sample breakdown by resident type and race), I can more confidently draw conclusions about cross-racial differences among gentrifiers. In fact, racial identity is crucial for gentrifier political behavior in Durham. The main results demonstrate my findings in regard to white gentrifiers, which are distinct from the results for nonwhite gentrifiers in Durham (see Appendix F). Ultimately, the findings from Durham, where gentrifier racial identity is clearly available, add empirical evidence and raise new questions about how individual racial identity shapes gentrifier politics.

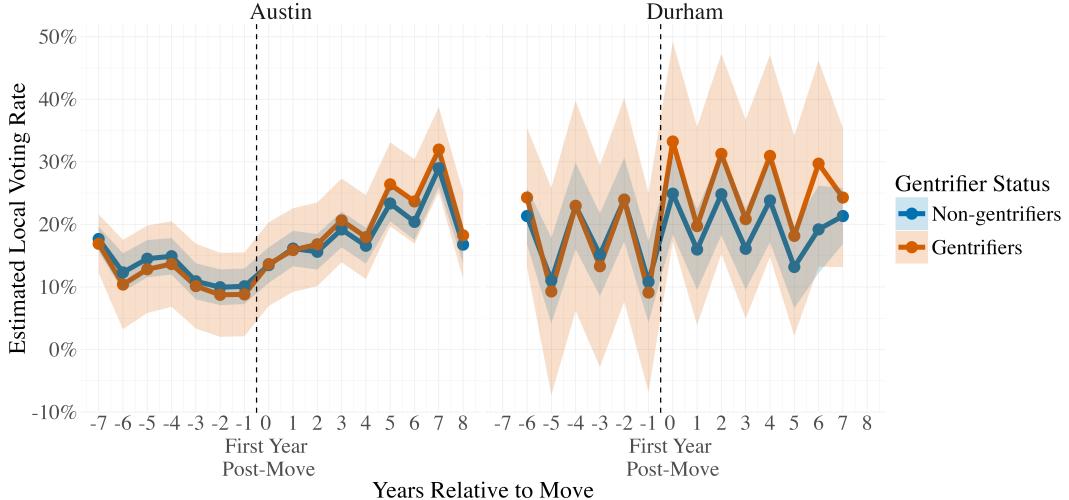
Once I have my gentrifier measure, I compare gentrifiers to other distinct types of urban residents. These key comparison groups are 1) residents of more traditionally affluent tracts, 2) long-term residents of gentrifying tracts, and 3) other movers. Table 1 describes the criteria for each category.

Table 1: Resident Type Variables

Resident Type	Description	Austin Sample N	Durham Sample N
Gentrifiers	Move from ineligible to gentrify (high SES) to gentrifying tracts	29,055	6,927
Affluent-area residents	Live in high SES tracts (above city average for median household income)	199,272	75,691
Long-term residents	Non-movers living in gentrifying neighborhoods	40,192	13,394
Other Movers	Move between similar SES tracts or move from low SES (below city average for median household income) into higher SES tracts	164,828	75,557

Control Variables

I adjust for several other covariates both at the individual and tract-level that are associated with local voter turnout. At the individual-level, I adjust for gender, age, race, and whether they reside in a single-unit or multi-unit property. While not an exact measure, residency in a multi-unit property is used primarily as a proxy for homeownership, given the existing evidence that being a homeowner makes individuals more likely to participate in politics, especially at the local level (Yoder 2020; Fischek 2001; Einstein, Glick, and Palmer 2019; Sahn 2024). Of note, since the Texas voter file does not include information about racial or ethnic background, I employ Bayesian Improved Surname Geocoding (BISG) which uses an individual's surname and location to estimate the probability that they are of a given racial category (DeLuca and Curiel 2023; Barreto et al. 2022) to impute the race or ethnicity of each of the voters in the voter file based on the probability of each racial category.⁶ Finally, I adjust for year and move year (if the individual moved at some point during the time range of the data). At the tract-level, I adjust for socio-economic indicators such as median household income, % in poverty, % college-educated, % unemployed, demographic indicators such as population, % Black, and % Latino, and the tract-level crime rate.⁷


⁶For more details about the BISG method see Appendix G.

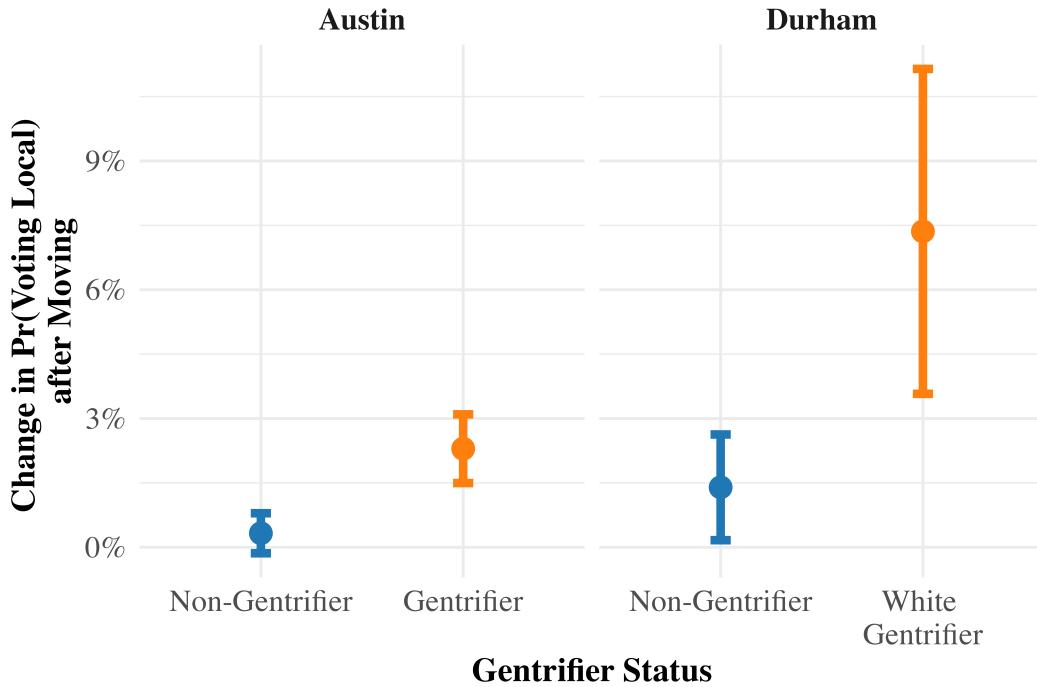
⁷To create a measure of the tract-level crime rate, I obtained incident-level crime data from the City of Austin Police Department from 2014-2022, geolocated the crimes within census tracts based on their geographic coordinates, and aggregated the number of crimes up to the tract level. I also coded by crime-type to create a measure of the violent crime rate, the property crime rate etc. I am unable to incorporate a measure of crime for Durham as the Durham Police Department changed its recording practices from the SRS to the NIBRS system in 2018 and the data is not comparable across reporting systems.

Results & Discussion

Movement into Gentrifying Tracts Increased Likelihood of Turnout among Gentrifiers

My first analysis tests the impact of moving into a gentrifying tract on voting in a local election for gentrifiers relative to non-gentrifier movers. To do this, I implement a difference-in-differences design using a matched sample of movers. I create my matched sample of movers using exact matching on the year they moved and 1:1 nearest neighbor matching to pair gentrifiers with non-gentrifiers whose pre-move tracts had similar SES characteristics (median hh income, median rent, % college-educated, % Nonwhite) and who themselves have similar individual-level characteristics (age). This yields a matched data set for each city. For Austin, the matched sample is 633,663 observations (70,407 unique movers over 9 years). For Durham, the matched sample is 124,216 observations (15,527 unique movers over 8 years). See Appendix B for details on matching process, balance tests, and tests to assess plausibility of parallel trends assumption. As the event study model in Figure 1 demonstrates, for both Austin and Durham, gentrifiers and non-gentrifiers have highly similar local voting patterns pre-movement, but following movement, the estimated local turnout for gentrifiers is higher than it is for non-gentrifiers. More broadly, in Austin local turnout has generally increased over time while for Durham, NC the pattern largely mirrors odd-year electoral timing.

Figure 1: Event Study Model: Local Voting Around Move X-axis are years pre and post move, with 0 being first year after move. Y-axis is the estimated local voting rate. Linear event-time model with gentrifier interaction. Estimates from OLS model with fixed event time indicators interacted with a binary treatment subgroup (gentrifiers and non-gentrifiers). 95% CIs displayed. Associated regression estimates can be found in Appendix Table D17 and Appendix Table D18.


Turning to the more formal estimates of the impact of moving for gentrifiers relative to similarly situated non-gentrifiers, I implement a difference-in-differences design and estimate the following logistic regression with yearly fixed-effects and clustered standard errors at the individual and census-tract level:

$$\begin{aligned}
 \text{Local Turnout}_{it} = & \beta_0 + \beta_1 \text{gentrifier}_i + \beta_2 \text{post_move}_t + \beta_3 (\text{gentrifier}_i \times \text{post_move}_t) \\
 & + \text{controls}_{it} + \alpha_{\text{year}_t} + \varepsilon_{it}
 \end{aligned}$$

Where $\text{Local Turnout}_{it}$ is an indicator for whether individual i votes in a local election at time t . gentrifier_i is an indicator for whether an individual is a gentrifier. post_move_t indicates whether an individual is pre or post move. The tract-level controls_{it} are the % unemployed, % nonwhite, and % living in poverty. The individual-level controls_{it} are gender, age, Black, Latino, living in a multi-unit property (proxy for renter), move year, and for Durham, whether they moved from within county or out of county.⁸ α_{year_t} represents year

⁸ Only the model for Durham contains a variable for out of county movers as data for

fixed effects. The standard errors are clustered by individual to account for within-person correlation over time and by tract since individuals are nested within tracts.

Figure 2: Marginal Effects of Gentrifier Status on Voting in a Local Election X-axis is gentrifier status, whether the mover is a gentrifier or not. Y-axis is the change in the predicted probability for voting in a local election after moving. Estimates from fully-specified fixed effects logistic regression models with controls at means. 95% CIs displayed. Associated regression estimates can be found in Appendix Table D19 and Appendix Table D20.

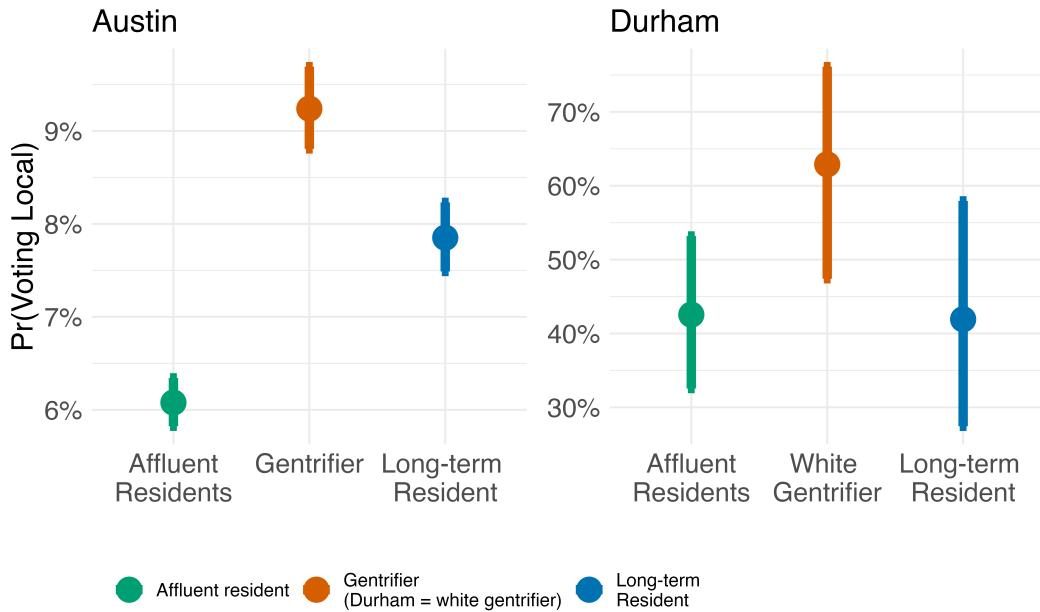
The results in Figure 2 demonstrate that for gentrifiers, moving increases their likelihood of participating in a local election relative to other movers coming from similarly situated tracts. For Austin, the predicted probability of voting in a local election for gentrifiers increases by about 3% relative to the less than 1% increase among non-gentrifiers. For Durham, the results mirror Austin only in the case of white gentrifiers. In Durham, white gentrifiers' likelihood of participation increases about 7.5% while for non-gentrifiers it is only about 1.5%. Both cities provide evidence in support of Hypothesis 1 that for gentrifiers, movement causes an increase in the propensity of voting in a local election relative to other movers who are coming from very similar tracts. These findings establish that gentrifying Austin is entirely from Travis County.

contexts themselves are important for the relationship between gentrifiers and local political participation. That is, this evidence runs counter to the idea that the static personal characteristics of gentrifiers are uniquely related to turnout and rather that increased turnout is related to their movement into gentrifying tracts.

It is worth noting again, that in the case of Durham, these effects exist only among white gentrifiers. For nonwhite gentrifiers, movement causes a decrease in likelihood of turnout (see Appendix Figure F4). This pattern persists in each of the findings, highlighting that in the case of Durham, my theory of gentrifier political engagement holds only in the case of white gentrifiers.

A final note, is that in Austin these results persist among both renters and homeowners, but in Durham they appear to be driven primarily by homeowners (See Appendix Section L for results by homeownership status). While I am cautious to draw too many conclusions from these findings given that my measure of home-ownership is residence in a single-unit property, these results do suggest the persistence of home-ownership as a major factor in local political participation (Fischek 2001; Einstein, Glick, and Palmer 2019; Sahn 2024). Furthermore, the distinct relationships between renter status among gentrifiers and political participation in Austin versus Durham, leave open the possibility that the competitiveness and more expensive nature of the Austin housing market pushes Austin renters to behave more like homeowners, consistent with work by (Hankinson 2018). Regardless, there is far more to be done exploring the intersection of homeownership, gentrification, and participation in local politics.

Gentrifier Participation Relative to other Groups of Urban Residents


In order to further contextualize the participation of gentrifiers relative to other types of urban residents, I conduct a second analysis that compares gentrifier likelihood of local turnout to that of residents of more affluent tracts and long-term residents of gentrifying

tracts. For this comparison, I turn my full sample for both cities. For Austin, this sample contains 4,102,893 observations (455,877 unique voters over 9 years). For Durham, this sample contains 1,612,184 observations (201,523 unique voters over 8 years). For Austin, I estimate a mixed-effects logistic regression with random intercepts for each individual voter, because I am interested in between-unit variation, that is the difference in turnout among gentrifiers relative to other types of residents. I also include year fixed-effects and cluster my standard errors at the tract level.

$$\text{Local Turnout}_{it} = \beta_0 + \beta_1 \text{resident_type}_{it} + \beta_2 \text{individual_controls}_{it} + \beta_3 \text{tract_controls}_{it} + u_i$$

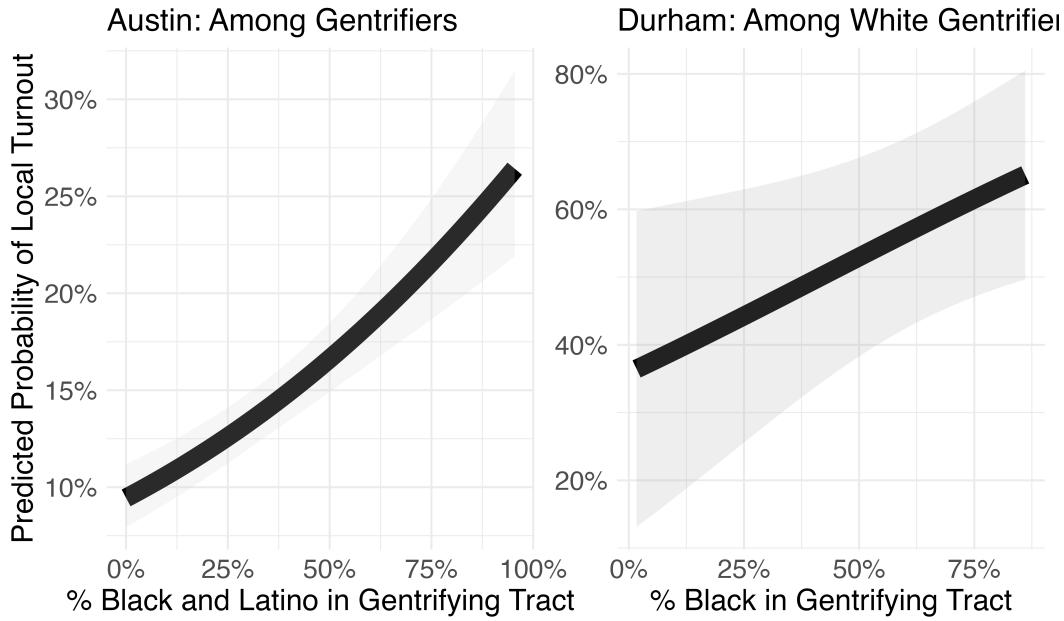
Where $\text{Local Turnout}_{it}$ is the probability of voting in a local election modeled using a logit link function. $\text{resident_type}_{it}$ is a categorical variable that represents the type of residents being compared. $\text{individual_controls}_{it}$ are age, gender, race, residence in a multi-unit property, whether a voter is post-move, and if they moved, the year that they moved. $\text{tract_controls}_{it}$ are % unemployed, % non-white, population, % living in poverty, and the crime rate. u_i represents the random intercept for each individual voter.

For Durham, I use a fixed effects logistic regression because the data contains very low within-person variation (approximately 88% of the sample has either always or never voted in a local election) resulting in a huge level of variance and potential numerical issues. Although the point estimates are consistent with the findings from Austin when using random intercepts for each individual voter, the expansive confidence intervals make it difficult to interpret the substantive results from a mixed effects regression. Therefore, I implement a logistic regression with time fixed effects and cluster my standard errors at the individual and tract level to account for potential autocorrelation. The full model resembles the above used for Austin save for the random intercept for each individual voter.

Figure 3: Predicted Probability of Voting in a Local Election by Resident Type X-axis is each resident type. Y-axis is the predicted probability of voting in a local election. Estimates from fully-specified logistic regression models with controls at means. 95% CIs displayed. Associated regression estimates can be found in Appendix Table D21 and Appendix Table D22.

Figure 3 demonstrates that post-move gentrifiers have a greater likelihood of local turnout relative to affluent neighborhood residents and to long-term residents of gentrifying neighborhoods. In the case of Austin, gentrifiers have a predicted probability of turnout of about 14%, 4% greater than residents of more affluent tracts and about 2% greater than long-term residents of gentrifying tracts. In the case of Durham, the estimates are more uncertain, but post-move white gentrifiers are still positively and significantly associated with a higher likelihood of voting in a local election relative to the other resident types. White gentrifiers have about a 62% predicted likelihood of local turnout, about 20% greater than affluent-area residents and long-term residents.

The results from the comparison between gentrifiers and affluent-area residents suggests that there is something unique about the political behavior of gentrifiers outside of their own personal resources that is associated with greater participation relative to similarly resourced voters. This unique factor is their presence in gentrifying contexts. However, when combined with the results from the comparison to long-term residents, it becomes clear that


local turnout is not simply correlated with living in a gentrifying spaces, but is also related to gentrifiers personal characteristics and how they relate to existing residents in gentrifying spaces. Thus, both of these comparisons provide evidence that gentrifiers' unique combination of personal privilege and place is associated with increased local political participation relative to similarly situated groups on the dimensions of resources and geographic location.

Race and Participation in Gentrifying Contexts

These contextual racial dynamics are central to the politics of gentrification. Both the race of individuals within gentrifying spaces and the overall racial composition of these neighborhoods have consequences for political behavior. To directly assess these dynamics, I subset my sample to post-move gentrifiers, and then regress the racial composition of the gentrifying tract they moved into on their likelihood of local turnout. For Austin, my key explanatory variable is the percentage of the post-move tract that is Black or Latino while for Durham I use only the percentage of the population that is Black. This is because in Austin, the Black population is quite small even within gentrifying tracts, and the Latino population is both numerically greater and has had a substantial historical presence in gentrifying tracts while for Durham, the Black population is larger more historically entrenched within gentrifying tracts.⁹

⁹ I conduct additional analyses with different racial demographic compositions (see Appendix I). Importantly, I find that the % Black of the population in post-move tracts is associated with increased turnout among gentrifiers across both cities while % Latino and the broader category of % Nonwhite yield insignificant results.

Figure 4: Predicted Local Turnout Conditional on % Black of Post-Move Tract
Y-axis is the predicted probability of voting in a local election after moving. X-axis is the % Black (Black-Latino in Austin) in the tract movers enter. Estimates from fully-specified logistic regression models with controls at means. 95% CIs displayed. Associated regression estimates can be found in Appendix Table D23 and Appendix Table D24.

The findings from Figure 4 show that among gentrifiers (among just white gentrifiers in Durham), movement into areas with greater Black and Black and Latino populations is associated with an increased probability of local turnout. These results provide support for hypothesis 3 and indicate that the racial composition, particularly the relative proportion of Black residents has implications for gentrifier turnout. Previous work in local politics has demonstrated that racial threat among white voters can activate increased voter turnout, but this racial threat has typically been linked to the growing presence of an out-group, in this case non-white residents. With gentrification, this pattern is reversed, with often white residents moving into areas that were once predominantly non-white. Even as these areas grow whiter during gentrification (Rucks-Ahidiana 2021; Fisher 2025; Bahrampour, Lang, and Mellnik 2025), there is a period of time where white residents are often in spaces with larger non-white populations. As these results demonstrate, when this type of context is present, we see heightened turnout by these newer, privileged residents. Furthermore, past

research has demonstrated that white respondents associate predominantly Black neighborhoods with greater levels of crime and disorder absent objective measures (Quillian and Pager 2001; Sampson and Raudenbush 2004). Thus, these results could be a function of white gentrifier perceptions of increased disorder in the presence of more non-white residents in their neighborhoods motivating increased political participation to remedy said disorder.

Results from additional analyses that use the % poverty and % unemployed in gentrifying tracts as the key explanatory variable, suggest that % Black could be acting as a signal of neighborhood disadvantage for gentrifiers. That is, gentrifiers in Austin also are more likely to turnout when moving into areas with a greater percentage of the population living in poverty and in Durham, when moving into areas with a higher percentage of the population that is unemployed (See Appendix Section I). Taken together, these results suggest that gentrifiers are mobilized by conditions they associate with neighborhood disadvantage. High levels of poverty and unemployment are often politically demobilizing, yet in the case of gentrifiers, they are associated with greater levels of participation, indicating that gentrifiers may see them as a signal of their neighborhood's potential and engage with the political system as a means of remedying them.

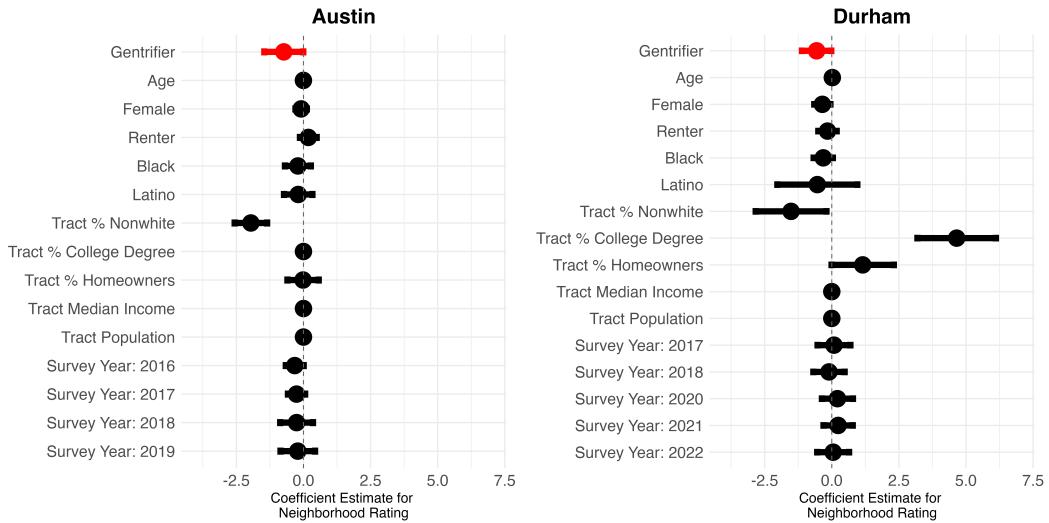
Mechanisms

Taken together, these results suggest a strong relationship between gentrifiers and increased political participation but cannot explain what drives this type of behavior. My theory argues that gentrifiers' positionality, well-resourced but living in previously dis-invested spaces, motivates their political participation. Dissatisfied with the infrastructure, appearance and services in their gentrifying neighborhoods, they use politics to garner increased government attention and investment. But relying on solely administrative data does not allow me to assess gentrifier perceptions of their neighborhood, a key component to my theory. To more directly explore the attitudinal component of this theory, I leverage community surveys from Austin and Durham that capture respondent attitudes towards their neighborhoods and their

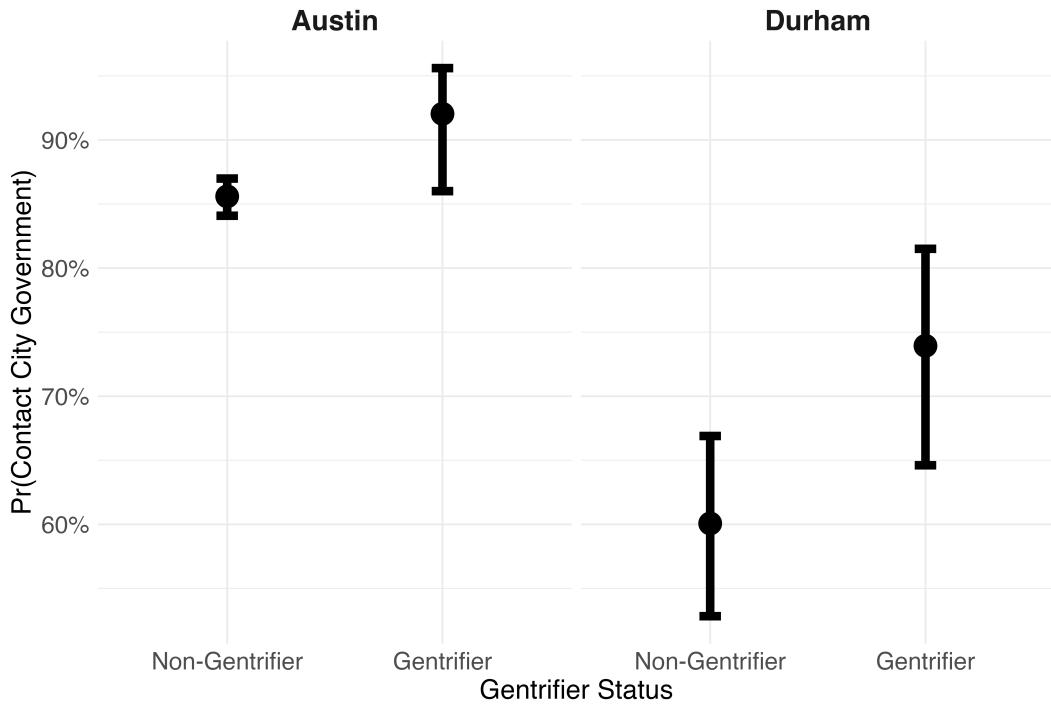
level of interaction with local government.

Analyzing Gentrifier Attitudes through Community Survey Data

The survey data comes from the Austin Community Survey and the Durham Resident Survey. Both were fielded annually (for Austin 2014-2019; for Durham (2015-2022) and contain similar questions. Each respondent also had geolocation information which allows me to locate them within census tracts. Using respondents' tract location and *ACS* data, I identify respondents with greater reported household income within gentrifying tracts and create resident-type categories that mirror those used in my previous analyses. For outcome variables, I first use a composite measure that combines respondent evaluations of various conditions of their neighborhood, (cleanliness, street and sidewalk conditions, and safety while walking at night).¹⁰ Next I create a binary variable that measures whether or not they reported contacting the local city government.¹¹


To test the perceived neighborhood conditions outcome, I run a linear regression model with robust standard errors, with resident type as the key explanatory variable. I include additional individual-level covariates: age, gender, renter, and race, as well as tract-level covariates: % college-educated, % Black, and % unemployed. To test the contact city government outcome, I run a logistic regression again with resident type as the key explanatory outcome and the same control variables.

¹⁰ See Appendix Section H for individual results between each measurement component.


¹¹ For more details on survey sample and construction of key variables see Appendix H.

Results

Figure 5: Gentrifier Perceptions of Neighborhood Conditions Y-axis are the variables in the regression model. X axis are the coefficient estimates for neighborhood rating. The left plot displays the results for Austin and the right plot for Durham. 95% CIs displayed. Associated regression estimates can be found in Appendix Table E25 and Appendix Table E26

The results in Figure 5 provide evidence for potential mechanisms behind increased gentrifier political participation. They demonstrate that gentrifiers are more likely to hold negative evaluations of the conditions in their neighborhoods relative to all other types of residents and that this holds in both cities. This provides preliminary evidence that the combination of personal resources and context structure gentrifiers' more negative perceptions of their neighborhoods. Combined with the results from my main analyses using administrative data, this suggests that gentrifier political engagement may be a product of their desire to improve the quality of the conditions in their neighborhood.

Figure 6: Gentrifier Likelihood of Contacting City Government Y-axis is the predicted probability of contacting city government. X axis is gentrifier status. The left plot displays the results for Austin and the right plot for Durham. Estimates from fully-specified generalized linear models with controls at means. 95% CIs displayed. Associated regression estimates can be found in Appendix Table E27, Appendix Table E28.

Next, the results in Figure 6 demonstrate that gentrifiers are more likely to contact city government relative to other residents. This provides further support for the earlier findings gleaned from the administrative voting data by signaling gentrifiers' propensity to make demands of local government and local public agencies. This suggests that gentrifiers are not only less satisfied with the conditions of their neighborhoods but also that they are more willing to contact the local government about it. More broadly, it highlights the distinct attitudes and behaviors that combine to make gentrifiers an important group within the landscape of local politics.

Conclusion

Gentrification has dramatically transformed the demographic landscape of many central city neighborhoods, disrupting community networks by bringing gentrifiers, often white, wealthy residents, into many previously disinvested, communities of color. Yet political science has paid relatively little attention to the individual-level political dynamics underpinning this transformation and particularly the behavior and motivations of gentrifiers themselves. Drawing on ethnographic accounts of gentrifier behavior and insights from the political participation literature, I argue that gentrifiers exhibit elevated levels of local political engagement, driven by the unique combination of their personal resources and their physical presence in marginalized urban spaces, in order to reshape their neighborhoods to match their cultural and economic preferences. Their proximity to disadvantage distinguishes them from affluent-area residents while at the same time, their personal resources and whiteness provide material advantages and foster trust in local officials, distinguishing them from long-term residents of gentrifying neighborhoods. The political participation literature has emphasized how socio-economic status and community ties influence political participation, but it has not directly tackled about how personally well-resourced residents who are in many ways distinct from their neighbors and have limited community ties, behave politically. Furthermore, the empirical challenges in studying a phenomenon such as gentrification have limited individual-level tests of participation among individuals in gentrifying contexts.

In order to test my argument, I draw on over one million unique voter records across seven years in the rapidly gentrifying context of Austin, TX and Durham, NC. I combine these records with *ACS* data in order to categorize different kinds of urban residents based on the socio-economic status of the tracts they reside in and move between. I use these categories to test a series of hypotheses about the local political participation of gentrifiers, first finding that gentrifiers are more likely to turnout in local elections relative to affluent-area residents and long-term residents of gentrifying tracts, and that the likelihood of turnout is directly

correlated with movement into a gentrifying tract. I then assess the role that neighborhood racial demographics play in gentrifier political participation. Here I find evidence gentrifier movement into tracts with greater populations of Black and Latino residents is associated with higher levels of local political participation relative to gentrifiers who move into whiter tracts and other urban movers. Furthermore, in the case of Durham, this increased turnout in more non-white spaces is driven largely by white gentrifiers relative to non-white gentrifiers.

This paper contributes to the literature on gentrification by demonstrating how gentrification mobilizes gentrifiers. Previous work has found that gentrification is associated with decreased participation by long-term residents, but has yet to investigate its influence on newer in-movers. By focusing on the relationship between gentrification and gentrifier political participation, this demonstrates how gentrifiers exert influence in their new neighborhoods, and how gentrifiers political behavior may act as an accelerant to neighborhood transformation.

I also contribute to work in racial and ethnic politics by examining the ways in which racial bias and racial threat can animate political behavior outside of the reactive politics of predominantly white, affluent neighborhoods. Even among often politically liberal, younger urbanites, racial biases that link predominantly non-white neighborhoods with perceived disorder, can increase the political participation for white gentrifiers. These dynamics suggest that racial bias operates not only through explicit hostility, but also through subtle perceptions of neighborhood decline and safety, which can spur political action.

Additionally, findings from Durham highlight important racial differences in political behavior among gentrifiers themselves: white and nonwhite gentrifiers do not engage politically in the same ways. This underscores that even among well-resourced individuals, race continues to shape patterns of participation in meaningful ways. More broadly, the paper offers a theoretical contribution to the study of local political participation by articulating a framework for understanding how relatively privileged individuals behave politically when embedded in historically marginalized spaces. Specifically, it argues that the juxtaposition

of personal advantage with neighborhood disadvantage creates a powerful incentive structure: privileged individuals in less privileged environments will turn to politics to remedy perceived disadvantage.

My research is not without limitations. First, while my findings demonstrate that gentrification is associated with greater participation among gentrifiers, they do not reveal the specific nature of said participation. That is, we still know little about the content of gentrifiers' politics. To fully understand the consequences of this increased political participation for urban policy and governance, requires research on the political attitudes and preferences of gentrifiers and how this contributes to local political outcomes. Another limitation of this paper is the ecological inference used to create my categories of urban residents, that is, the categories are based on the assumption that individuals living in higher resourced areas are themselves personally well-resourced. Future research should leverage both highly granular administrative data and individual-level survey data that can shed light on the personal characteristics of gentrifiers as well as provide greater insight into the mechanisms driving their participation. Ultimately, the politics of gentrification presents a promising avenue for political scientists. It offers insight into how power is wielded in the modern American city—not only through wealth, but through the ability to re-frame public needs, influence institutions, and reshape urban space.

References

Albrecht, Don E and Scott G Albrecht (2007). “The benefits and costs of inequality for the advantaged and disadvantaged”. In: *Social Science Quarterly* 88.2, pp. 382–403.

Ansolabehere, Stephen and Eitan Hersh (2014). “Voter registration: The process and quality of lists”. In: *The measure of American elections*, pp. 61–90.

Austin Open Data Portal, City of (Dec. 26, 2022). “Community Survey”. In: *Austin Texas Government*. URL: <https://data.austintexas.gov/City-Government/Community-Survey/s2py-ceb7>.

Bahrampour, Tara, Marissa J. Lang, and Ted Mellnik (2025). *White people have flocked back to city centers — and transformed them*. The Washington Post. URL: <https://www.washingtonpost.com/dc-md-va/interactive/2023/us-city-white-population-increase/>.

Barreto, Matt et al. (2022). “A Novel Method for Showing Racially Polarized Voting: Bayesian Improved Surname Geocoding”. In: *NYU Review of Law & Social Change* 46.1.

Beck, Brenden (2020). “Policing gentrification: Stops and low-level arrests during demographic change and real estate reinvestment”. In: *City & Community* 19.1, pp. 245–272.

Betancur, John (2002). “The Politics of Gentrification: The Case of West Town in Chicago”. In: *Urban Affairs Review* 37.6, pp. 780–814.

Blasius, Jörg and Jürgen Friedrichs (2019). “Changes of lifestyles in the social space: The case of gentrification”. In: *Empirical Investigations of Social Space*, pp. 61–79.

Brady Henry, Verba Sidney and Kay Lehman Scholzman (1995). “Beyond SES: A resource model of political participation”. In: *American Political Science Review* 89.2, pp. 271–294.

Brown, Leslie (2009). *Upbuilding Black Durham: Gender, class, and Black community development in the Jim Crow south*. Univ of North Carolina Press.

Brown-Saracino, Japonica (2009). *A Neighborhood That Never Changes: Gentrification, Social Preservation, and the Search for Authenticity. Fieldwork Encounters and Discoveries*. University of Chicago Press.

Bullard, Robert D (2008). “Differential vulnerabilities: Environmental and economic inequality and government response to unnatural disasters”. In: *Social Research: An International Quarterly* 75.3, pp. 753–784.

Chou, Winston and Rafaela Dancygier (2021). “Why parties displace their voters: Gentrification, coalitional change, and the demise of public housing”. In: *American political science review* 115.2, pp. 429–449.

Clay, Phillip (2017). “Neighborhood Revitalization; The Experience and the Promise”. In: *Housing urban America*. Routledge, pp. 536–546.

Couture, Victor et al. (2024). “Income growth and the distributional effects of urban spatial sorting”. In: *Review of Economic Studies* 91.2, pp. 858–898.

Dantzler, Prentiss A (2021). “The urban process under racial capitalism: Race, anti-Blackness, and capital accumulation”. In: *Journal of Race, Ethnicity and the City* 2.2, pp. 113–134.

DeLuca, Kevin and John A. Curiel (2023). “Validating the Applicability of Bayesian Inference with Surname and Geocoding to Congressional Redistricting”. In: *Political Analysis* 31.3, 465–471.

DeSilver, Drew (2024). *A look at the state of affordable housing in the U.S.* Pew Research Center. URL: <https://www.pewresearch.org/short-reads/2024/10/25/a-look-at-the-state-of-affordable-housing-in-the-us/>.

Desmond, Matthew (2022). “Unaffordable America: poverty, housing, and eviction: American Journal of Sociology”. In: *The affordable housing reader*. Routledge, pp. 389–395.

Einstein, Katherine Levine, David M. Glick, and Maxwell Palmer (2019). *Neighborhood Defenders: Participatory Politics and America’s Housing Crisis*. Cambridge University Press.

Ellen, Ingrid Gould and Katherine M. O'Regan (2011). "How low income neighborhoods change: Entry, exit, and enhancement". In: *Regional Science and Urban Economics* 41.2, pp. 89–97.

Enos, Ryan (2016). "What the demolition of public housing teaches us about the impact of racial threat on political behavior". In: *American Journal of Political Science* 60.1, pp. 123–142.

Fallon, Katherine F (2021). "Reproducing race in the gentrifying city: A critical analysis of race in gentrification scholarship". In: *Journal of Race, Ethnicity and the City* 2.1, pp. 1–28.

Feiveson Laura, Levinson Arwik and Sydney Schreiner (2024). *Rent, House Prices, and Demographics*. U.S. Department of the Treasury. URL: <https://home.treasury.gov/news/featured-stories/rent-house-prices-and-demographics#:~:text=Over%20the%20last%20two%20decades,grown%20more%20than%20housing%20supply..>

Fischek, William A. (2001). "Homevoters, Municipal Corporate Governance, and the Benefit View of the Property Tax". In: *National Tax Journal* 54.1, 157–173.

Fisher, Lina (2025). *Austin growth is slowing, increasingly driven by international migration, as Hispanic and Black residents leave*. Austin Monitor. URL: <https://austinmonitor.com/stories/2025/07/austin-growth-is-slowing-increasingly-driven-by-international-migration-as-hispanic-and-black-residents-leave/>.

Florida, Richard (2002). *The rise of the creative class*. New York: Basic Books.

Freeman, Lance (2005). "Displacement or succession? residential mobility in gentrifying neighborhoods". In: *Urban Affairs Review* 40.4, pp. 463–491.

— (2006). *There goes the hood: Views of gentrification from the ground up*. Temple University Press.

Grier, Sonya A and Vanessa G Perry (2018). "Dog parks and coffee shops: Faux diversity and consumption in gentrifying neighborhoods". In: *Journal of Public Policy & Marketing* 37.1, pp. 23–38.

Guerrieri, Veronica, Daniel Hartley, and Erik Hurst (2013). “Endogenous gentrification and housing price dynamics”. In: *Journal of Public Economics* 100, pp. 45–60.

Hamel, Brian T. and Bryan Wilcox-Archuleta (2022). “Black Workers in White Places: Daytime Racial Diversity and White Public Opinion”. In: *The Journal of Politics* 84.3, 1828–1833.

Hankinson, Michael (Mar. 2018). “When Do Renters Behave Like Homeowners? High Rent, Price Anxiety, and NIMBYism”. In: *American Political Science Review* 112, pp. 1–21.

Highton, Benjamin (2000). “Residential mobility, community mobility, and electoral participation”. In: *Political Behavior* 22, pp. 109–120.

Hirsch, Jana A et al. (2017). “Neighborhood sociodemographics and change in built infrastructure”. In: *Journal of Urbanism: International Research on Placemaking and Urban Sustainability* 10.2, pp. 181–197.

Howell, Junia and Elizabeth Korver-Glenn (2021). “The increasing effect of neighborhood racial composition on housing values, 1980–2015”. In: *Social Problems* 68.4, pp. 1051–1071.

Huckfeldt, R Robert (1986). *Politics in context: Assimilation and conflict in urban neighborhoods*. Algora Publishing.

Hwang, Jackelyn (2020). “Gentrification without segregation? Race, immigration, and renewal in a diversifying city”. In: *City & Community* 19.3, pp. 538–572.

Hwang, Jackelyn and Jeffrey Lin (2016). “What have we learned about the causes of recent gentrification?” In: *Cityscape* 18.3, pp. 9–26.

Hyra, Derek (2008). *The New Urban Renewal: The Economic Transformation of Harlem and Bronzeville*. University of Chicago Press.

Hyra, Derek S (2017). *Race, class, and politics in the cappuccino city*. University of Chicago Press.

Institute, Urban (2022). *School Funding: Do Poor Kids Get Their Fair Share?* Interactive feature on school funding disparities. URL: <https://apps.urban.org/features/school-funding-do-poor-kids-get-fair-share/> (visited on 01/22/2025).

Jones, Ja'han (2024). *Louisiana Supreme Court gives the city of St. George the right to secede from Baton Rouge*. URL: <https://www.msnbc.com/the-reidout/reidout-blog/louisiana-secede-baton-rouge-st-george-rcna150675>.

Kirkland, Elizabeth (2008). "What's Race Got to Do With it? Looking for the Racial Dimensions of Gentrification." In: *Western Journal of Black Studies* 32.2.

Knotts, H. Gibbs and Moshe Haspel (2006). "The Impact of Gentrification on Voter Turnout". In: *Social Science Quarterly* 87.1, pp. 110–121.

Laniyonu, Ayobami (2018). "Coffee shops and street stops: Policing practices in gentrifying neighborhoods". In: *Urban Affairs Review* 54.5, pp. 898–930.

Lee, Diana Da In and Yamil Ricardo Velez (2024). "Rising tides or political ripcurrents? gentrification and minority representation in 166 cities". In: *Urban Affairs Review* 60.3, pp. 956–982.

Leighley, Jan E and Jennifer Oser (2018). "Representation in an era of political and economic inequality: How and when citizen engagement matters". In: *Perspectives on Politics* 16.2, pp. 328–344.

Ley, David (1997). *The new middle class and the remaking of the central city*. Oxford University Press.

McKinney Jr, Charles W (2024). *Campus to Counter: Civil Rights Activism in Raleigh and Durham, North Carolina, 1960–1963*.

Michener, Jamila (2013). "Neighborhood Disorder and Local Participation: Examining the Political Relevance of "Broken Windows"". In: *Political Behavior* 35, 777–806.

Mock, Brentin (2023). *Residents of Suburban Atlanta's Newest City Are Already Trying to Secede*. URL: <https://www.bloomberg.com/news/articles/2023-01-24/atlanta-suburbs-residents-want-to-secede-from-new-city-of-mableton>.

Mohai, Paul (2018). "Environmental justice and the Flint water crisis". In: *Michigan Sociological Review* 32, pp. 1–41.

Nelsen, Matthew D., Kumar Ramanathan, and Thomas Ogorzalek (2023). "Experiences of Policing in Gentrifying Neighborhoods: Evidence From Chicago". In: *Urban Affairs Review* 0, p. 0.

Newman Benjamin, Velez Yamil and Shanna Pearson-Merkowitz (2016). "Diversity of a Different Kind: Gentrification and Its Impact on Social Capital and Political Participation in Black Communities". In: *Journal of Race, Ethnicity and Politics* 1, pp. 316–347.

Nicoletti, Leonardo, Mikhail Sirenko, and Trivik Verma (2023). "Disadvantaged communities have lower access to urban infrastructure". In: *Environment and Planning B: Urban Analytics and City Science* 50.3, pp. 831–849.

Nuamah, Sally A and Thomas Ogorzalek (2021). "Close to home: Place-based mobilization in racialized contexts". In: *American Political Science Review* 115.3, pp. 757–774.

Oglesby, Cameron (2020). *As gentrification marches on, Braggtown is latest Durham community fighting back*. The 9th Street Journal. URL: <https://9thstreetjournal.org/2020/10/06/as-gentrification-marches-on-braggtown-is-latest-durham-community-fighting-back/>.

Oishi, Shigehiro et al. (2007). "The socioecological model of procommunity action: the benefits of residential stability." In: *Journal of personality and social psychology* 93.5, p. 831.

Oliver, JE (2001). *Democracy in suburbia*.

Parekh, Trushna (2015). "They want to live in the Tremé, but they want it for their ways of living": gentrification and neighborhood practice in Tremé, New Orleans". In: *Urban Geography* 36.2, pp. 201–220.

Putnam, Robert D (2000). "Bowling alone: The collapse and revival of American community". In: *Simon Schuster*.

Quillian, Lincoln and Devah Pager (2001). "Black neighbors, higher crime? The role of racial stereotypes in evaluations of neighborhood crime". In: *American Journal of Sociology* 107.3, pp. 717–767.

Robinson, Tony (1995). "Gentrification and grassroots resistance in san francisco's tender-loin". In: *Urban Affairs Quarterly* 30.4, pp. 483–513.

Rothstein, Richard (2017). *The color of law: A forgotten history of how our government segregated America*. Liveright Publishing.

Rucks-Ahidiana, Zawadi (2021). "Racial composition and trajectories of gentrification in the United States". In: *Urban Studies* 58.13, pp. 2721–2741.

Ruef, Martin and Seok-Woo Kwon (2016). "Neighborhood associations and social capital". In: *Social Forces* 95.1, pp. 159–190.

Sahn, Alexander (2024). "Public comment and public policy". In: *American Journal of Political Science*.

Sampson, Robert J. and Stephen W. Raudenbush (2004). "Seeing Disorder: Neighborhood Stigma and the Social Construction of "Broken Windows."". In: *Social Psychology Quarterly* 67.4, pp. 319–342.

Schumacher, Gijs and Patrik Öhberg (2020). "How do politicians respond to opinion polls? An experiment with Swedish politicians". In: *Research & Politics* 7.3, p. 2053168020955106.

Seim, Josh et al. (2018). "Neighborhood poverty and 9-1-1 ambulance response time". In: *Prehospital Emergency Care* 22.4, pp. 436–444.

Shino, Enrijeta et al. (2020). "Verifying voter registration records: Part of special symposium on election sciences". In: *American Politics Research* 48.6, pp. 677–681.

Solari, Claudia D (2012). "Affluent neighborhood persistence and change in US cities". In: *City & Community* 11.4, pp. 370–388.

Souza Briggs, Xavier de and Benjamin J Keys (2009). "Has exposure to poor neighbourhoods changed in America? Race, risk and housing locations in two decades". In: *Urban Studies* 46.2, pp. 429–458.

Swanson, Todd, Peter Dreier, and John Mollenkopf (2002). “Economic inequality and public policy: The power of place”. In: *City & Community* 1.4, pp. 349–372.

Trounstein, Jessica (2018). *Segregation by design: Local politics and inequality in American cities*. Cambridge University Press.

— (2020). “The geography of inequality: How land use regulation produces segregation”. In: *American Political Science Review* 114.2, pp. 443–455.

Vaughan, Dawn Baumgartner and Zachery Eanes (2018). *’Story of My Street’: Gentrification and neighborhood change in Durham*. The Herald Sun. URL: <https://www.heraldsun.com/news/local/counties/durham-county/article204694739.html>.

Verba, Sidney and Nie Norman (1972). *Participation In America: Social Equality and Political Democracy*. New York: Harper & Row.

Verrilli, Allison (2025). “New Faces, Changing Spaces: How Gentrification Shapes Household Demand for Policing”. In: *Urban Affairs Review*, p. 10780874251330255.

Wong, Janelle (2008). *Democracy’s promise: Immigrants and American civic institutions*. University of Michigan Press.

Yoder, Jesse (2020). “Does Property Ownership Lead to Participation in Local Politics? Evidence from Property Records and Meeting Minutes”. In: *American Political Science Review* 114.4, 1213–1229. DOI: 10.1017/S0003055420000556.

Zuk, Miriam et al. (2018). “Gentrification, Displacement, and the Role of Public Investment”. In: *Journal of Planning Literature* 33.1, pp. 31–44.

Zukin, Sharon (2009). *Naked city: The death and life of authentic urban places*. Oxford University Press.

Appendices

Supplemental Information

A Sample Descriptives & Distribution	2
B Matching	5
C Parallel Trends	9
C.1 Austin	9
C.2 Durham	11
D Regression Tables for Main Results	14
E Regression Tables for Survey Results	23
F Results by Race of Gentrifier	27
G Details on BISG Method	35
H Survey Data	37
H.1 Survey Sample	37
H.2 Key Variables	38
I Additional Moderation Analyses	47
I.1 % Poverty of Post-Move Tract	47
J Federal Elections	62
K Move Year Window	69
L Homeowner vs. Renter	72
L.1 Homeowners	72
L.2 Renters	78

A Sample Descriptives & Distribution

Voter File Representativeness

Overall, this is a novel approach that expands the range of uses for voter file data and allows for the more granular study of geographic mobility, but still, limitations exist. The first stems from the reliance on voter file data, which excludes certain types of individuals such as those under-18 and those not registered to vote. Administrative data can also yield systemic under-representation of populations due to different participation rates among subgroups (Ansolabehere and Hersh 2014; Shino et al. 2020). For the purposes of this paper, I compare the representativeness of voter file data to the over-18 population in Austin and Durham and to the population of gentrifying tracts. As Appendix Table A1 demonstrates, the sample demographics are largely similar to the *ACS* estimates for Austin, with the exception of racial demographics where Black and Latino individuals are underrepresented in the voter file data. However, this should not dramatically bias the results as 1) the main group of interest in my study, gentrifiers, tend to be much whiter on average than the general population and 2) this still allows me to make key comparisons between gentrifiers and other non-movers and movers who may be similar demographically but who do not move into gentrifying areas.

For Durham, Appendix Table A2 demonstrates again, largely similar descriptive statistics to the ACS estimates with the exception of overrepresenting the 18-29 age demographics and underrepresenting the Latino population. Again, this should not bias my results as my main group of interest, gentrifiers, tend to be younger and whiter than the general population in Durham and thus this sample allows me to directly test the behavior of this group of voters.

Table A1: Demographics for Registered Voters and Travis County (Austin) Pop. > 18

Data	18-29	30-44	45-64	65+	Female	White	Black	Latino	Asian
ACS	29%	31%	29%	13%	50%	76%	9%	24%	6%
Voter File	17%	35%	32%	17%	49%	73%	3%	19%	5%

Table A2: Demographics for Registered Voters and Travis County (Durham) Pop. > 18

Data	18-29	30-44	45-64	65+	Female	White	Black	Latino	Asian
ACS	25%	29%	30%	16%	52%	42%	36%	14%	5%
Voter File	32%	28%	29%	12%	50%	46%	34%	3%	3%

Census Tracts by Gentrification Status

Table A3: Austin Census Tracts by Gentrification Status

Tract Status	Total Tracts	Percent
Gentrifying	53	22.26%
High SES	147	61.76%
Low SES	38	15.97%
Total	238	100.00%

Table A4: Durham Census Tracts by Gentrification Status

Tract Status	Total Tracts	Percent
Gentrifying	18	25.71%
High SES	43	61.43%
Low SES	9	12.86%
Total	70	100.00%

Movers by Year

Table A5: Austin Within-County Movers by Year (2015-2022)

Year	Total Movers	Percent
2015	24201	12.48%
2016	16702	8.61%
2017	34651	17.87%
2018	27849	14.36%
2019	29317	15.12%
2020	16334	8.42%
2021	33661	17.36%
2022	11168	5.76%
Total	193883	100.00%

Table A6: Durham Within-State Movers by Year (2016-2022)

Year	Total Movers	Percent
2016	6338	7.68%
2017	21819	26.45%
2018	6061	7.35%
2019	14335	17.38%
2020	9254	11.22%
2021	22219	26.94%
2022	2458	2.98%
Total	82484	100.00%

Resident Type by Race

Table A7: AUS: Resident Type by Race

Resident Type	White	Black	Latino	Asian	Total
Gentrifiers	22545 (77.6%)	731 (2.5%)	4458 (15.3%)	1302 (4.5%)	29055
Long-term Residents	26649 (66.3%)	1510 (3.8%)	10761 (26.8%)	1235 (3.1%)	40192
Affluent-area Residents	152250 (76.4%)	4759 (2.4%)	31019 (15.6%)	11094 (5.6%)	199272
Other Movers	124070 (75.3%)	4532 (2.8%)	28831 (17.5%)	7285 (4.4%)	164828

Table A8: DUR: Resident Type by Race

Resident Type	White	Black	Latino	Asian	Total
Gentrifiers	2703 (47.8%)	2707 (47.9%)	146 (2.6%)	97 (1.7%)	5653
Long-term Residents	3926 (32.0%)	7975 (65.1%)	252 (2.1%)	103 (0.8%)	12256
Affluent-area Residents	41850 (58.4%)	27136 (37.9%)	1131 (1.6%)	1502 (2.1%)	71619
Other Movers	31838 (52.8%)	24876 (41.2%)	1671 (2.8%)	1967 (3.3%)	60352

B Matching

To create matched data for Austin & Durham

1. method: 1:1 nearest neighbor matching without replacement
2. distance: Propensity score - estimated with logistic regression
3. AUS: number of obs.: 1,415,461 (movers), 209,308 (matched pre-move); 633,663 (matched full);

4. DUR: number of obs.: 484,654 (movers), 47,708 (matched pre-move); 124,216 (matched full).
5. target estimand: ATT
6. covariates: Pre-move tract characteristics: median hh income, median rent, % college-educated, % Nonwhite, and individual age

Table B9: AUS: Balance Summary for All Data

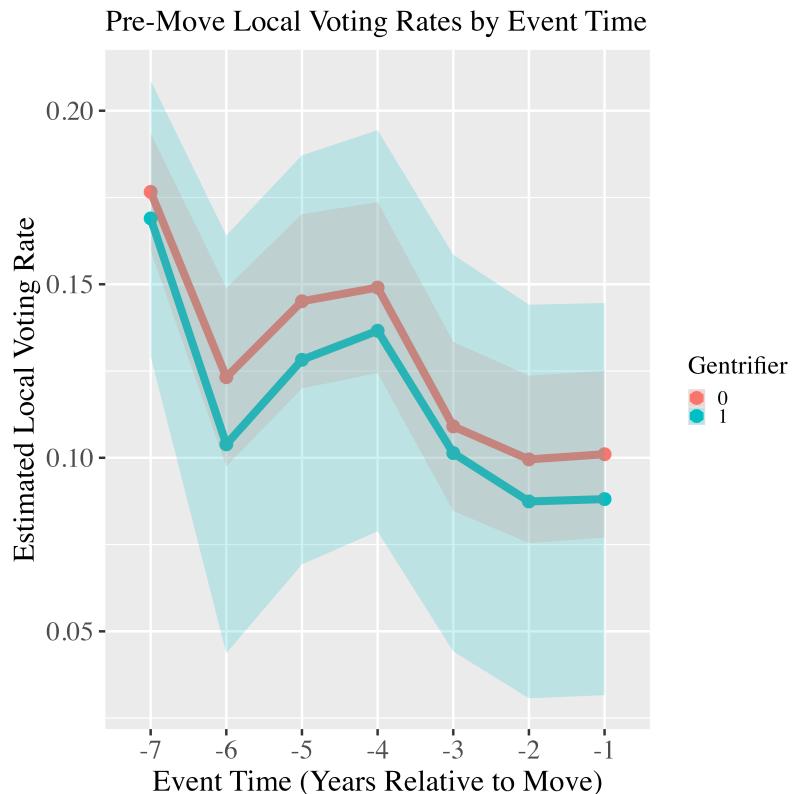
	Means Treated	Means Control	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max	Std. Pair Dist.
distance	0.16	0.13	0.51	1.13	0.13	0.23	
mhhi	74022.60	72113.12	0.05	1.15	0.05	0.11	
mrent	1342.58	1260.39	0.26	0.93	0.07	0.15	
pcol	0.58	0.53	0.29	0.78	0.07	0.12	
p_race_nonwhite	0.37	0.43	-0.32	0.72	0.07	0.14	
age	39.02	43.85	-0.37	0.81	0.05	0.17	
move_year2016	0.06	0.05	0.04		0.01	0.01	
move_year2015	0.06	0.04	0.10		0.02	0.02	
move_year2017	0.21	0.15	0.14		0.06	0.06	
move_year2018	0.11	0.14	-0.12		0.04	0.04	
move_year2019	0.18	0.16	0.06		0.02	0.02	
move_year2020	0.07	0.10	-0.09		0.02	0.02	
move_year2021	0.23	0.25	-0.04		0.02	0.02	
move_year2022	0.08	0.11	-0.13		0.03	0.03	

Table B10: AUS: Balance Summary for Matched Data

	Means Treated	Means Control	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max	Std. Pair Dist.
distance	0.16	0.16	0.00	1.00	0.00	0.00	0.00
mhhi	74022.60	73932.69	0.00	0.99	0.01	0.02	0.20
mrent	1342.58	1338.86	0.01	0.91	0.01	0.03	0.21
pcol	0.58	0.58	0.01	0.96	0.00	0.01	0.23
p_race_nonwhite	0.37	0.37	-0.01	0.96	0.00	0.01	0.22
age	39.02	38.80	0.02	1.11	0.01	0.01	0.20
move_year2016	0.06	0.06	0.00		0.00	0.00	0.00
move_year2015	0.06	0.06	0.00		0.00	0.00	0.00
move_year2017	0.21	0.21	0.00		0.00	0.00	0.00
move_year2018	0.11	0.11	0.00		0.00	0.00	0.00
move_year2019	0.18	0.18	0.00		0.00	0.00	0.00
move_year2020	0.07	0.07	0.00		0.00	0.00	0.00
move_year2021	0.23	0.23	0.00		0.00	0.00	0.00
move_year2022	0.08	0.08	0.00		0.00	0.00	0.00

Table B11: DUR: Balance Summary for All Data

	Means Treated	Means Control	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max	Std. Pair Dist.
distance	0.09	0.08	0.30	1.07	0.09	0.16	
mhhi	65383.22	58823.32	0.26	0.93	0.09	0.15	
mrent	1094.48	1024.97	0.30	0.87	0.05	0.15	
pcol	0.50	0.46	0.17	1.12	0.04	0.10	
p_race_nonwhite	0.50	0.53	-0.12	1.25	0.05	0.11	
age	37.15	39.59	-0.16	0.94	0.03	0.09	
move_year2016	0.05	0.03	0.08		0.02	0.02	
move_year2017	0.24	0.19	0.12		0.05	0.05	
move_year2018	0.07	0.07	0.02		0.00	0.00	
move_year2019	0.17	0.18	-0.03		0.01	0.01	
move_year2020	0.11	0.13	-0.05		0.02	0.02	
move_year2021	0.30	0.32	-0.05		0.02	0.02	
move_year2022	0.05	0.08	-0.11		0.02	0.02	


Table B12: DUR: Balance Summary for Matched Data

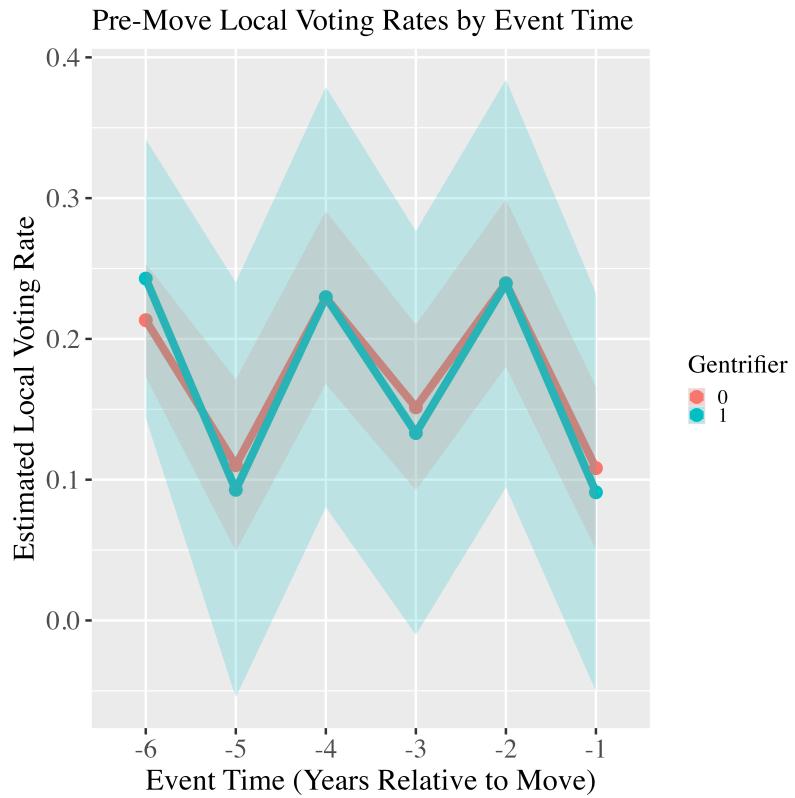
	Means Treated	Means Control	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max	Std. Pair Dist.
distance	0.09	0.09	0.00	1.00	0.00	0.00	0.00
mhhi	65383.22	64800.69	0.02	0.94	0.02	0.03	0.28
mrent	1094.48	1089.36	0.02	0.91	0.01	0.02	0.25
pcol	0.50	0.50	0.01	1.03	0.00	0.02	0.30
p_race_nonwhite	0.50	0.51	-0.04	1.09	0.02	0.04	0.32
age	37.15	36.81	0.02	1.14	0.01	0.02	0.32
move_year2016	0.05	0.05	0.00		0.00	0.00	0.00
move_year2017	0.24	0.24	0.00		0.00	0.00	0.00
move_year2018	0.07	0.07	0.00		0.00	0.00	0.00
move_year2019	0.17	0.17	0.00		0.00	0.00	0.00
move_year2020	0.11	0.11	0.00		0.00	0.00	0.00
move_year2021	0.30	0.30	0.00		0.00	0.00	0.00
move_year2022	0.05	0.05	0.00		0.00	0.00	0.00

After I have my matched data on pre-merge tract and individual characteristics, I identify the voters in the matched data from the full data set in order to incorporate the post-move data. Thus the long format matched dataset is 774,477 voter-year observations for Austin and 124,216 voter-year observations for Durham.

C Parallel Trends

C.1 Austin

Figure C1: AUS: Pre-Move Local Voting Rates by Event Time


Table C13: AUS: Joint Significance Test of Pre-Treatment Interactions

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)	
131298.00	12458.57					
131292.00	12458.40	6.00		0.17	0.31	0.93

Table C14: AUS: Regression Results from Placebo Test

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.18	0.01	20.60	0.00
placebo_event_time-4	-0.05	0.01	-5.39	0.00
placebo_event_time-3	-0.03	0.01	-3.31	0.00
placebo_event_time-2	-0.03	0.01	-3.01	0.00
placebo_event_time-1	-0.07	0.01	-7.53	0.00
placebo_event_time0	-0.08	0.01	-8.74	0.00
placebo _e vent_time1	-0.08	0.01	-8.64	0.00
gentrifier	-0.01	0.02	-0.42	0.68
placebo_event_time-4:gentrifier	-0.01	0.02	-0.56	0.57
placebo_event_time-3:gentrifier	-0.01	0.02	-0.46	0.65
placebo_event_time-2:gentrifier	-0.00	0.02	-0.25	0.80
placebo_event_time-1:gentrifier	-0.00	0.02	-0.00	1.00
placebo_event_time0:gentrifier	-0.00	0.02	-0.24	0.81
placebo_event_time1:gentrifier	-0.01	0.02	-0.29	0.78

C.2 Durham

Figure C2: DUR: Pre-Move Local Voting Rates by Event Time

Table C15: DUR: Joint Significance Test of Pre-Treatment Interactions

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
131297.00	12458.57				
131292.00	12458.40	5.00	0.17	0.36	0.88

Table C16: DUR: Regression Results from Placebo Test

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.18	0.01	20.60	0.00
placebo_event_time-4	-0.05	0.01	-5.39	0.00
placebo_event_time-3	-0.03	0.01	-3.31	0.00
placebo_event_time-2	-0.03	0.01	-3.01	0.00
placebo_event_time-1	-0.07	0.01	-7.53	0.00
placebo_event_time0	-0.08	0.01	-8.74	0.00
placebo_event_time1	-0.08	0.01	-8.64	0.00
gentrifier	-0.01	0.02	-0.42	0.68
placebo_event_time-4:gentrifier	-0.01	0.02	-0.56	0.57
placebo_event_time-3:gentrifier	-0.01	0.02	-0.46	0.65
placebo_event_time-2:gentrifier	-0.00	0.02	-0.25	0.80
placebo_event_time-1:gentrifier	-0.00	0.02	-0.00	1.00
placebo_event_time0:gentrifier	-0.00	0.02	-0.24	0.81
placebo_event_time1:gentrifier	-0.01	0.02	-0.29	0.78

D Regression Tables for Main Results

Table D17: AUS: Voting Around Move by Gentrifier Status

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.18	0.01	17.39	0.00
factor(event_time)-6	-0.05	0.01	-4.55	0.00
factor(event_time)-5	-0.03	0.01	-2.80	0.01
factor(event_time)-4	-0.03	0.01	-2.54	0.01
factor(event_time)-3	-0.07	0.01	-6.36	0.00
factor(event_time)-2	-0.08	0.01	-7.38	0.00
factor(event_time)-1	-0.08	0.01	-7.30	0.00
factor(event_time)0	-0.04	0.01	-4.04	0.00
factor(event_time)1	-0.02	0.01	-1.48	0.14
factor(event_time)2	-0.02	0.01	-1.97	0.05
factor(event_time)3	0.02	0.01	1.47	0.14
factor(event_time)4	-0.01	0.01	-1.04	0.30
factor(event_time)5	0.06	0.01	5.42	0.00
factor(event_time)6	0.03	0.01	2.58	0.01
factor(event_time)7	0.11	0.01	10.25	0.00
factor(event_time)8	-0.01	0.01	-0.78	0.44
gentrifier	-0.01	0.02	-0.35	0.73
factor(event_time)-6:gentrifier	-0.01	0.02	-0.47	0.64
factor(event_time)-5:gentrifier	-0.01	0.02	-0.39	0.70
factor(event_time)-4:gentrifier	-0.00	0.02	-0.21	0.83
factor(event_time)-3:gentrifier	-0.00	0.02	-0.00	1.00
factor(event_time)-2:gentrifier	-0.00	0.02	-0.20	0.84
factor(event_time)-1:gentrifier	-0.01	0.02	-0.24	0.81
factor(event_time)0:gentrifier	0.01	0.02	0.42	0.68
factor(event_time)1:gentrifier	0.01	0.02	0.24	0.81

Table D18: DUR: Voting Around Move by Gentrifier Status

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.21	0.02	9.88	0.00
factor(event_time)-5	-0.11	0.02	-4.58	0.00
factor(event_time)-4	0.01	0.02	0.34	0.73
factor(event_time)-3	-0.08	0.02	-3.39	0.00
factor(event_time)-2	0.02	0.02	0.87	0.38
factor(event_time)-1	-0.12	0.02	-5.33	0.00
factor(event_time)0	0.05	0.02	2.14	0.03
factor(event_time)1	-0.06	0.02	-2.65	0.01
factor(event_time)2	0.03	0.02	1.31	0.19
factor(event_time)3	-0.05	0.02	-2.49	0.01
factor(event_time)4	0.02	0.02	0.94	0.35
factor(event_time)5	-0.08	0.02	-3.63	0.00
factor(event_time)6	-0.01	0.02	-0.49	0.62
gentrifier_white	0.11	0.08	1.46	0.14
factor(event_time)-5:gentrifier_white	-0.05	0.09	-0.60	0.55
factor(event_time)-4:gentrifier_white	0.00	0.09	0.04	0.97
factor(event_time)-3:gentrifier_white	0.02	0.08	0.26	0.79
factor(event_time)-2:gentrifier_white	-0.03	0.08	-0.37	0.71
factor(event_time)-1:gentrifier_white	-0.05	0.08	-0.63	0.53
factor(event_time)0:gentrifier_white	0.03	0.08	0.42	0.67
factor(event_time)1:gentrifier_white	0.03	0.08	0.41	0.68
factor(event_time)2:gentrifier_white	0.08	0.08	1.07	0.28
factor(event_time)3:gentrifier_white	0.03	0.08	0.41	0.68
factor(event_time)4:gentrifier_white	0.08	0.08	1.03	0.30
factor(event_time)5:gentrifier_white	0.03	0.08	0.37	0.71
factor(event_time)6:gentrifier_white	0.12	0.08	1.49	0.14

Table D19: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election

	Voted Local
Gentrifier	0.040 (0.026)
Post-Move	0.027 (0.019)
Female	0.009 (0.013)
Age	0.016 (0.001)***
% Unemployed	0.315 (0.660)
Black Voter	-0.152 (0.050)**
Latino Voter	-0.398 (0.028)***
Multi-Unit Prop.	-0.317 (0.030)***
% Nonwhite	-0.880 (0.116)***
% Poverty	-0.090 (0.192)
Move Year 2015	0.083 (0.028)**
Move Year 2017	-0.486 (0.028)***
Move Year 2018	-0.197 (0.034)***
Move Year 2019	-0.489 (0.030)***
Move Year 2020	-0.012 (0.037)
Move Year 2021	-0.735 (0.037)***
Move Year 2022	-0.320 (0.049)***
Population	-0.000 (0.000)***
Gentrifier*Post-Move	0.149 (0.031)***
Num. obs.	488406
Num. groups: year	8
Deviance	398307.312
Log Likelihood	-199153.656
Pseudo R ²	0.088

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table D20: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election

	Voted Local
Gentrifier	0.095 (0.079)
Post-Move	−0.045 (0.046)
Female	0.130 (0.034)***
Age	0.018 (0.002)***
% Unemployed	−0.555 (1.786)
Black Voter	−0.321 (0.104)**
Latino Voter	−0.752 (0.109)***
Multi-Unit Prop.	−0.504 (0.090)***
% Nonwhite	−1.145 (0.301)***
% Poverty	1.426 (0.548)**
Move Year 2017	−0.482 (0.068)***
Move Year 2018	0.167 (0.091)
Move Year 2019	−0.475 (0.078)***
Move Year 2020	−0.147 (0.099)
Move Year 2021	−0.828 (0.090)***
Move Year 2022	0.158 (0.119)
Moved From Out of County	−0.008 (0.059)
Gentrifier*Post-Move	0.319 (0.095)***
Num. obs.	39186
Num. groups: year	3
Deviance	37295.357
Log Likelihood	−18647.679
Pseudo R ²	0.061

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table D21: AUS: Predicted Probability of Voting in a Local Election by Resident Type

Voted Local	
(Intercept)	-2.784 (0.035)***
Gentrifier	0.453 (0.017)***
Long-term Resident	0.275 (0.015)***
Post-Move	0.095 (0.012)***
Female	0.003 (0.012)
Age	0.025 (0.000)***
% Unemployed	0.271 (0.154)
% Nonwhite	-1.469 (0.028)***
% Poverty	-0.293 (0.041)***
Year: 2015	-0.330 (0.019)***
Year: 2016	0.644 (0.017)***
Year: 2017	0.338 (0.018)***
Year: 2018	-1.395 (0.021)***
Year: 2019	0.563 (0.019)***
Year: 2020	0.916 (0.019)***
Year: 2021	1.457 (0.019)***
Year: 2022	-0.154 (0.021)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)***
Move Year 2015	0.128 (0.023)***
Move Year 2017	-0.609 (0.023)***
Move Year 2018	-0.261 (0.023)***
Move Year 2019	-0.499 (0.024)***
Move Year 2020	0.050 (0.028)
Move Year 2021	-0.925 (0.026)***
Move Year 2022	-0.469 (0.034)***
Multi-unit Property	-0.418 (0.010)***
Latino Voter	-0.631 (0.017)***
Black Voter	-0.374 (0.038)***
AIC	782154.772
Log Likelihood	-391047.386
Num. obs.	1056849
Num. groups: vuid	180114
Var: vuid (Intercept)	3.032

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table D22: DUR: Predicted Probability of Voting in a Local Election by Resident Type

	Voted Local
Affluent-area Resident	0.009 (0.211)
Gentrifier (white)	0.846 (0.181)***
Post-Move	-0.034 (0.036)
Female	0.163 (0.019)***
Age	0.019 (0.001)***
% Unemployed	-1.446 (1.959)
% Nonwhite	-0.582 (0.273)*
% Poverty	0.593 (0.533)
Move Year 2017	-0.498 (0.037)***
Move Year 2018	0.103 (0.048)*
Move Year 2019	-0.420 (0.054)***
Move Year 2020	-0.153 (0.054)**
Move Year 2021	-0.799 (0.055)***
Move Year 2022	0.062 (0.088)
Population	-0.000 (0.000)***
Latino Voter	-0.442 (0.075)***
Black Voter	0.200 (0.089)*
Moved from Out of County	-0.091 (0.042)*
Multi-unit Prop.	-0.483 (0.075)***
Num. obs.	138574
Num. groups: year	3
Deviance	125060.192
Log Likelihood	-62530.096
Pseudo R ²	0.061

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table D23: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Black-Latino of Post-Move Tract

	Voted Local
(Intercept)	-1.314 (0.098)***
% Black-Latino	1.295 (0.199)***
% Poverty	0.348 (0.117)**
Female	0.007 (0.030)
Age	0.008 (0.001)***
% Unemployed	0.612 (0.442)
Year: 2017	-0.402 (0.054)***
Year: 2018	-2.133 (0.060)***
Year: 2019	-0.095 (0.049)
Year: 2020	0.360 (0.048)***
Year: 2021	0.873 (0.048)***
Year: 2022	-0.876 (0.050)***
Population	-0.000 (0.000)***
% Nonwhite	-1.955 (0.217)***
Crime Rate	-0.000 (0.000)
Move Year 2015	0.262 (0.055)***
Move Year 2017	-0.501 (0.055)***
Move Year 2018	-0.225 (0.061)***
Move Year 2019	-0.638 (0.060)***
Move Year 2020	-0.246 (0.080)**
Move Year 2021	-0.802 (0.084)***
Multi-unit Property	-0.366 (0.026)***
Black Voter	-0.257 (0.100)**
Latino Voter	-0.568 (0.045)***
AIC	97232.454
Log Likelihood	-48591.227
Num. obs.	112168
Num. groups: vuid	27865
Var: vuid (Intercept)	2.996

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table D24: DUR: Predicted Local Turnout Among White Gentrifiers Conditional on % Black of Post-Move Tract

	Voted Local
% Black	1.398 (0.722)
Female	0.099 (0.075)
Age	0.011 (0.007)
% Unemployed	2.092 (2.039)
% Poverty	-0.016 (0.649)
Population	-0.000 (0.000) **
% Nonwhite	-1.940 (0.747) **
Multi-unit Prop.	-0.688 (0.137) ***
Move Year 2017	-0.599 (0.120) ***
Move Year 2018	-0.139 (0.202)
Move Year 2019	-0.774 (0.119) ***
Move Year 2020	-0.685 (0.253) **
Move Year 2021	-0.964 (0.181) ***
Out of County Mover	-0.107 (0.068)
Num. obs.	5631
Num. groups: year	3
Deviance	6707.458
Log Likelihood	-3353.729
Pseudo R ²	0.060

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

E Regression Tables for Survey Results

Table E25: AUS: Gentrifier Perceptions of Neighborhood Conditions

Model 1	
Intercept	14.210 (0.413)***
Gentrifier	-0.733 (0.370)*
Age	-0.002 (0.036)
Female	-0.086 (0.108)
Renter	0.180 (0.159)
Tract % Homeowners	-0.015 (0.297)
Tract % College	-0.001 (0.005)
Tract % Nonwhite	-1.959 (0.308)***
Black	-0.208 (0.246)
Latino	-0.196 (0.270)
Tract Median HH Income	0.000 (0.000)***
Tract Pop.	0.000 (0.000)***
Survey Year: 2016	-0.326 (0.170)
Survey Year: 2017	-0.258 (0.163)
Survey Year: 2018	-0.256 (0.311)
Survey Year: 2019	-0.212 (0.328)
R ²	0.109
Adj. R ²	0.104
Num. obs.	3202
RMSE	3.006

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table E26: DUR: Gentrifier Perceptions of Neighborhood Conditions

Model 1	
Intercept	10.732 (0.750)***
Gentrifier	-0.565 (0.278)*
Age	0.020 (0.059)
Female	-0.351 (0.153)*
Renter	-0.159 (0.174)
Tract % Homeowners	1.152 (0.592)
Tract % College	4.653 (0.746)***
Tract % Nonwhite	-1.516 (0.672)*
Black	-0.318 (0.183)
Latino	-0.538 (0.760)
Tract Median HH Income	-0.000 (0.000)
Tract Pop.	0.000 (0.000)***
Survey Year: 2017	0.082 (0.312)
Survey Year: 2018	-0.104 (0.297)
Survey Year: 2020	0.211 (0.295)
Survey Year: 2021	0.236 (0.278)
Survey Year: 2022	0.051 (0.303)
R ²	0.182
Adj. R ²	0.174
Num. obs.	1712
RMSE	3.157

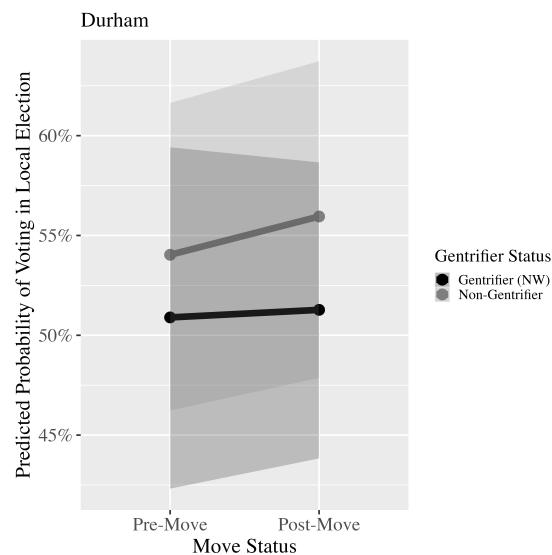
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table E27: AUS: Gentrifier Likelihood of Contacting City Government

Model 1	
Intercept	0.852 (0.266)**
Gentrifier	0.666 (0.324)*
Age	-0.009 (0.033)
Female	0.095 (0.099)
Renter	-0.764 (0.126)***
Tract % Homeowners	0.282 (0.257)
Tract % College	0.033 (0.002)***
Tract % Nonwhite	1.166 (0.246)***
Black	-0.485 (0.201)*
Latino	-0.518 (0.166)**
Tract Median HH Income	-0.000 (0.000)**
Tract Pop.	-0.000 (0.000)**
Tract % Unemployed	3.378 (1.725)
AIC	2684.568
BIC	2763.659
Log Likelihood	-1329.284
Deviance	2658.568
Num. obs.	3242

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table E28: DUR: Gentrifier Likelihood of Contacting City Government


Model 1	
Intercept	−0.817 (0.514)
Gentrifier	0.634 (0.188)***
Age	0.022 (0.036)
Female	−0.016 (0.095)
Renter	−0.478 (0.106)***
Tract % Homeowners	0.495 (0.346)
Tract % College	1.768 (0.505)***
Tract % Nonwhite	1.539 (0.428)***
Black	0.168 (0.107)
Latino	−0.046 (0.336)
Tract Median HH Income	−0.000 (0.000)
Tract Pop.	−0.000 (0.000)***
Tract % Unemployed	1.171 (2.166)
Survey Year: 2017	0.084 (0.209)
Survey Year: 2018	−0.103 (0.191)
Survey Year: 2020	−0.147 (0.189)
Survey Year: 2021	−0.251 (0.183)
Survey Year: 2022	−0.486 (0.184)**
AIC	2569.752
BIC	2669.778
Log Likelihood	−1266.876
Deviance	2533.752
Num. obs.	1914

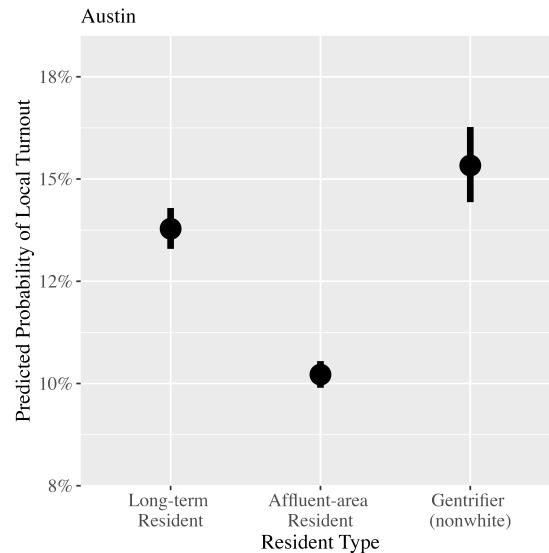
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

F Results by Race of Gentrifier

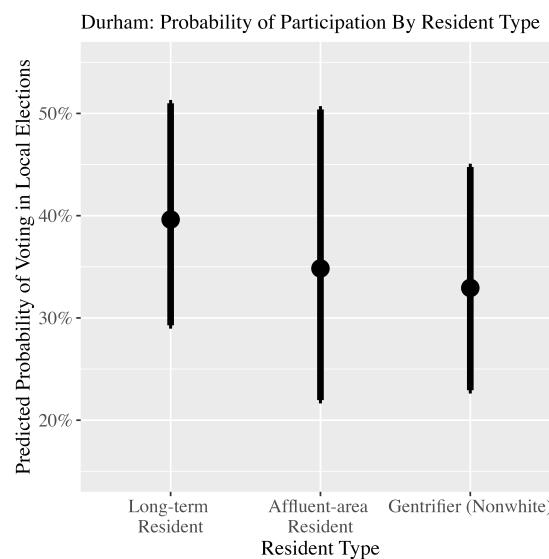
Figure F3: AUS: Marginal Effects of Nonwhite Gentrifier Status Voting in a Local Election

Figure F4: DUR: Marginal Effects of Nonwhite Gentrifier Status Voting in a Local Election

Table F29: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election


	Voted Local
Gentrifier (nonwhite)	0.025 (0.042)
Post-Move	0.078 (0.019)***
Female	0.004 (0.014)
Age	0.017 (0.001)***
% Unemployed	0.258 (0.648)
Black Voter	-0.242 (0.055)***
Latino Voter	-0.437 (0.037)***
Multi-Unit Prop	-0.303 (0.032)***
% Nonwhite	-0.857 (0.119)***
% Poverty	-0.146 (0.185)
Crime Rate	0.000 (0.000)
Population	-0.000 (0.000)***
Move Year 2015	0.099 (0.029)***
Move Year 2017	-0.478 (0.028)***
Move Year 2018	-0.225 (0.033)***
Move Year 2019	-0.502 (0.030)***
Move Year 2020	-0.048 (0.035)
Move Year 2021	-0.762 (0.038)***
Move Year 2022	-0.392 (0.051)***
Gentrifier (nonwhite) \times Post-Move	0.133 (0.045)**
Num. obs.	469047
Num. groups: year	8
Deviance	380633.374
Log Likelihood	-190316.687
Pseudo R ²	0.090

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

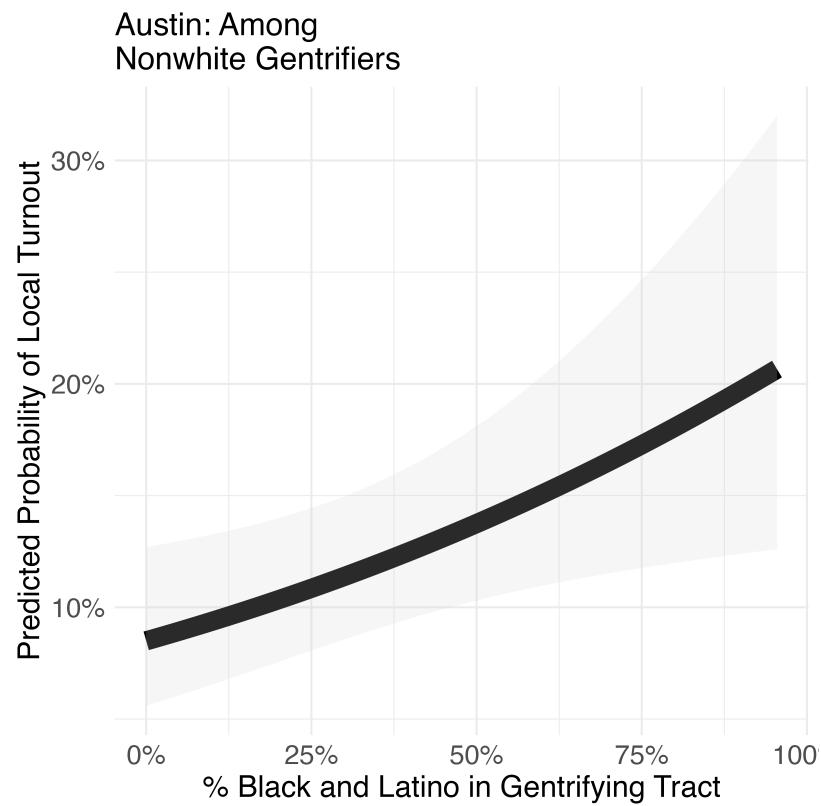

Table F30: DUR: Marginal Effects of Gentrifier (NW) on Voting in a Local Election

	Voted Local
Gentrifier (NW)	−0.126 (0.087)
Post-Move	0.078 (0.041)
Female	0.120 (0.034)***
Age	0.018 (0.002)***
% Unemployed	−0.119 (1.850)
Black Voter	−0.274 (0.109)*
Latino Voter	−0.718 (0.111)***
Multi-Unit Prop.	−0.464 (0.085)***
% Nonwhite	−1.229 (0.309)***
% Poverty	2.242 (0.535)***
Move Year 2017	−0.498 (0.067)***
Move Year 2018	0.127 (0.091)
Move Year 2019	−0.514 (0.078)***
Move Year 2020	−0.201 (0.098)*
Move Year 2021	−0.882 (0.088)***
Move Year 2022	0.102 (0.121)
Moved From Out of County	0.058 (0.060)
Gentrifier (NW)*Post-Move	−0.062 (0.101)
Num. obs.	39186
Num. groups: year	3
Deviance	37430.003
Log Likelihood	−18715.001
Pseudo R ²	0.058

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure F5: AUS: Predicted Probability of Voting in a Local Election by Resident Type

Figure F6: DUR: Predicted Probability of Voting in a Local Election by Resident Type


Table F31: AUS: Local Election Turnout Post-Move Conditional on % Black-Latino

	Voted Local
(Intercept)	-176.185 (4.351)***
Affluent-area Resident	-0.340 (0.015)***
Gentrifier (NW)	0.124 (0.034)***
Post-Move	0.121 (0.011)***
Female	0.006 (0.011)
Age	0.024 (0.000)***
% Unemployed	0.634 (0.150)***
% Nonwhite	-1.289 (0.029)***
% Poverty	-0.486 (0.042)***
year	0.086 (0.002)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)***
Move Year 2015	0.113 (0.023)***
Move Year 2017	-0.559 (0.022)***
Move Year 2018	-0.234 (0.023)***
Move Year 2019	-0.442 (0.023)***
Move Year 2020	0.122 (0.027)***
Move Year 2021	-0.824 (0.025)***
Move Year 2022	-0.458 (0.032)***
Multi-Unit Prop.	-0.387 (0.010)***
Latino Voter	-0.586 (0.017)***
Black Voter	-0.323 (0.036)***
AIC	752142.196
Log Likelihood	-376048.098
Num. obs.	964120
Num. groups: vuid	165811
Var: vuid (Intercept)	2.475

Table F32: DUR: Predicted Probability of Voting in a Local Election by Resident Type

	Voted Local
Affluent-area Resident	−0.205 (0.202)
Gentrifier (NW)	−0.290 (0.116)*
Post-Move	−0.008 (0.037)
Female	0.160 (0.018)***
Age	0.020 (0.001)***
% Unemployed	−1.783 (1.944)
% Nonwhite	−0.553 (0.282)*
% Poverty	0.466 (0.554)
Move Year 2017	−0.502 (0.037)***
Move Year 2018	0.118 (0.046)*
Move Year 2019	−0.407 (0.054)***
Move Year 2020	−0.142 (0.054)**
Move Year 2021	−0.799 (0.056)***
Move Year 2022	0.069 (0.089)
Population	−0.091 (0.027)***
Latino Voter	−0.446 (0.073)***
Black Voter	0.151 (0.093)
Moved from Out of County	−0.069 (0.045)
Multi-unit Prop.	−0.470 (0.074)***
Num. obs.	140371
Num. groups: year	3
Deviance	125296.773
Log Likelihood	−62648.387
Pseudo R ²	0.057

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

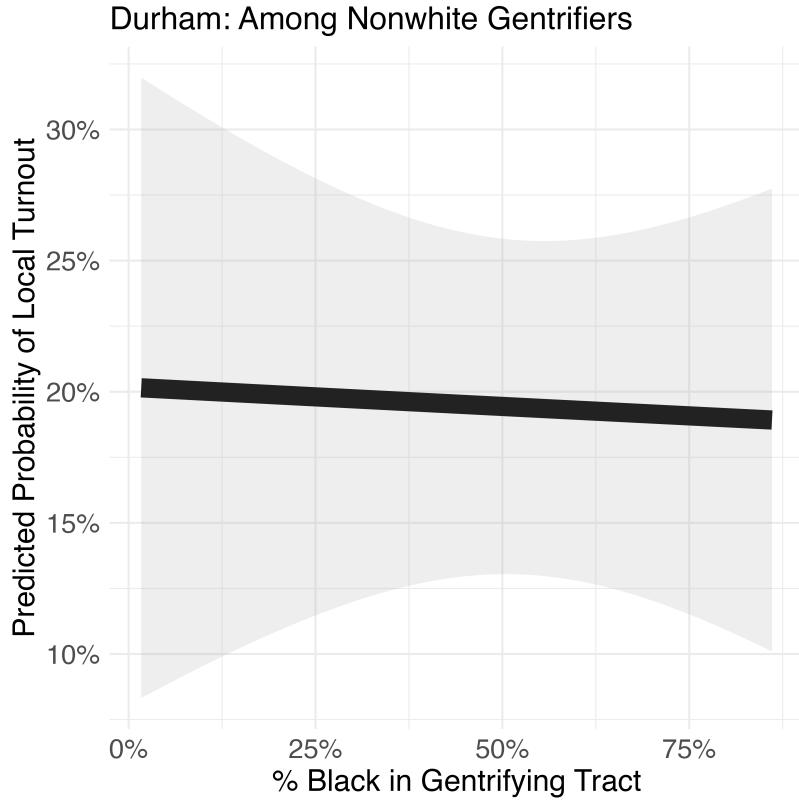


Figure F7: AUS: Predicted Local Turnout Among Nonwhite Gentrifiers Conditional on % Black-Latino of Post-Move Tract

Table F33: AUS: Predicted Local Turnout Among Nonwhite Gentrifiers Conditional on % Black-Latino of Post-Move Tract

	Voted Local
(Intercept)	-0.667 (0.245)**
% Black-Latino	1.080 (0.457)*
% Poverty	0.242 (0.237)
Female	0.007 (0.072)
Age	-0.013 (0.003)***
% Unemployed	1.286 (0.988)
Year: 2017	-0.566 (0.128)***
Year: 2018	-2.169 (0.145)***
Year: 2019	-0.213 (0.115)
Year: 2020	0.452 (0.112)***
Year: 2021	0.768 (0.112)***
Year: 2022	-0.861 (0.117)***
Population	-0.000 (0.000)
% Nonwhite	-2.149 (0.502)***
Crime Rate	-0.000 (0.000)
Move Year 2015	0.403 (0.135)**
Move Year 2017	-0.658 (0.134)***
Move Year 2018	-0.220 (0.147)
Move Year 2019	-0.699 (0.142)***
Move Year 2020	-0.563 (0.190)**
Move Year 2021	-0.952 (0.201)***
Multi-unit Property	-0.319 (0.061)***
Black Voter	-0.054 (0.132)
Latino Voter	-0.399 (0.091)***
AIC	18732.966
Log Likelihood	-9341.483
Num. obs.	24465
Num. groups: vuid	6241
Var: vuid (Intercept)	3.621

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure F8: DUR: Predicted Local Turnout Among Nonwhite Gentrifiers Conditional on % Black of Post-Move Tract

G Details on BISG Method

Bayesian Improved Surname Geocoding (BISG) estimation imputes missing voter race information by calculating the joint probability of racial membership given surname and geographic residence. Using individuals' surnames matched to a surname dictionary as the prior, joined to Census geography demographics for the conditional probability, produces more accurate racial estimates relative to other methods (Imai and Khanna 2016). Since the TX voter file data does not contain information on race, I implement BISG to impute missing race data by voter.

To implement, I use wru package and input the surname, census tract, county, state, age, and sex of all the unique voters in each year of data. The average return rate across all years was 92.9%. The observations that were returned had probabilistic estimates for the

Table F34: DUR: Predicted Local Turnout Among Nonwhite Gentrifiers Conditional on % Black of Post-Move Tract

	Voted Local
% Black	−0.093 (0.616)
% Poverty	0.022 (0.071)
Female	0.024 (0.004)***
Age	0.440 (2.104)
% Unemployed	−0.538 (0.455)
Population	−0.000 (0.000)**
% Nonwhite	−1.183 (0.554)*
Multi-unit Property	−0.445 (0.090)***
Move Year 2017	−0.524 (0.098)***
Move Year 2018	0.126 (0.158)
Move Year 2019	−0.316 (0.129)*
Move Year 2020	−0.350 (0.176)*
Move Year 2021	−0.775 (0.160)***
Moved from Out of County	0.360 (0.102)***
Num. obs.	8410
Num. groups: year	3
Deviance	6963.319
Log Likelihood	−3481.660
Pseudo R ²	0.055

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

likelihood that the voter was a member of each racial group: white, black, hispanic, asian, and other. From these estimates, I used the highest probability to code each voter into a racial category. The breakdown of the final sample of unique voters by race is located below. I also created a secondary measure which I only coded a voter as a member of a racial group if the probability estimate was 75%. I used this as a robustness check for my models in which race of voter is a key independent variable.

Table G35: AUS: Sample by Race

Racial Category	Voters	Percent
White	345700	73.42%
Black	13081	2.78%
Latino	87952	18.68%
Asian	23822	5.06%
Other	326	0.07%
Total	470881	100.00%

H Survey Data

H.1 Survey Sample

Both cities used the same market research firm, ETC Research, to field their Community surveys yielding highly similar formats and questions. Both were administered annually (for Austin 2014-2019; for Durham (2015-2022) and were used “to assess citizen satisfaction with the delivery of City Services and to help determine priorities for the community” (Austin Open Data Portal 2022). Both were mailed to a random sample of households in the city and respondents answered either by mail or the internet. For Austin, this was a stratified random sample as a minimum of 200 surveys were conducted in each of the 10 city council

districts. Responses were then weighted to approximate the racial demographic composition of the city as a whole. In total, the Austin Community Survey has 9959 respondents over the six-year span, and the Durham Resident Survey had 5253 respondents over the eight-year span.

Table H36: Austin Community Survey
Sample Descriptives by Resident Type

Resident Type	Count	Under 24	25-44	45-64	65+	White	Female
Gentrifier	129	10.9%	44.2%	33.3%	11.6%	80.6%	48.8%
Affluent Resident	3553	12.4%	30%	42%	15.1%	74.8%	45.6%
Long-Term Resident	320	15.6%	26.3%	37.5%	20.3%	47.8%	59.4%

Table H37: Durham Resident Survey
Sample Descriptives by Resident Type

Resident Type	Count	18-34	35-44	45-64	65+	White	Female
Gentrifier	170	31.2%	25.8%	35.5%	7.5%	61.8%	50.6%
Affluent Resident	1036	17.3%	25.2%	45.5%	12.0%	58.42%	46.76%
Long-Term Resident	154	40.0%	14.9%	29.7%	15.8%	37.0%	59.7%

H.2 Key Variables

Resident Type

For the Community surveys, each respondent had geolocation information at the census block level, which I used to locate them within census tracts. Because the survey lacks a question on length of residency in one's house or neighborhood, I measure gentrifiers as respondents who live in gentrifying tracts and whose annual household income is greater than \$80,000 (in the top two categories for the question on annual household income). I measure affluent-area residents as respondents living in non-gentrification eligible tracts and

also making more than \$80,000 a year. Long-term residents are respondents in gentrifying tracts making less than \$80,000 a year. Sample breakdown by resident type is displayed in Appendix H.

Neighborhood Conditions

I create the neighborhood conditions variable by summing responses to four questions, each asking the respondent to rate how satisfied they are with the quality of item on a scale from 1 Very Dissatisfied to 5 Very Satisfied. The four items for Austin were: “Cleanliness of your neighborhood”, “Condition of sidewalks in your neighborhood”, “Condition of streets in your neighborhood”, and “How safe do you feel walking in your neighborhood at night.” For Durham, three of the four items were the same with the only difference being instead of asking about the “Cleanliness of your neighborhood”, it asked about the “Overall quality of Life in your neighborhood.” The final variable for rating of neighborhood conditions ranges from 4 to 20 with a mean of 14.29 for Austin and 13.42 for Durham.

Contact City Government

The other key outcome variable is whether a respondent reported contacting the city. For Austin, I create a composite measure of interaction with city agencies comprised of four items asking whether the respondents has done any of the following in the past year: “contacted the municipal court”, “contacted code enforcement”, “made a 311 request”, or “contacted Austin Public Health Department.” For Durham I include the answer to the following question: “During the past year, have you or other members of your household contacted employees of the City of Durham or visited the website to seek services, ask a question, or file a complaint?” Both are binary variables with 1 for a respondent who has contacted the city in these capacities.

Regressions for Components of Neighborhood Perceptions Measure

Table H38: AUS: Perceptions of Neighborhood Cleanliness by Resident Type

Neighborhood Cleanliness	
Intercept	4.255 (0.114)***
Gentrifier	−0.052 (0.187)
Long-term Resident	−0.236 (0.132)
% Unemployed	0.145 (0.160)
Age	0.003 (0.019)
Female	0.015 (0.055)
Renter	−0.018 (0.076)
% Black-Latino	−1.385 (0.137)***
Nonwhite	0.031 (0.064)
R ²	0.113
Adj. R ²	0.108
Num. obs.	1414
RMSE	0.990

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table H39: AUS: Perceptions of Neighborhood Sidewalks by Resident Type

Neighborhood Sidewalks	
Intercept	3.501 (0.126)***
Gentrifier	-0.729 (0.194)***
Long-term Resident	-0.028 (0.129)
% Unemployed	0.109 (0.240)
Age	0.022 (0.021)
Female	-0.093 (0.065)
Renter	0.078 (0.086)
% Black-Latino	-0.555 (0.140)***
Nonwhite	0.052 (0.074)
R ²	0.036
Adj. R ²	0.030
Num. obs.	1311
RMSE	1.122

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table H40: AUS: Perceptions of Neighborhood Streets by Resident Type

Neighborhood Streets	
Intercept	3.603 (0.121)***
Gentrifier	-0.422 (0.180)*
Long-term Resident	-0.354 (0.130)**
% Unemployed	0.121 (0.182)
Age	0.007 (0.019)
Female	0.070 (0.059)
Renter	-0.055 (0.079)
% Black-Latino	-0.404 (0.133)**
Nonwhite	0.003 (0.068)
R ²	0.028
Adj. R ²	0.023
Num. obs.	1417
RMSE	1.072

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table H41: AUS: Perceptions of Neighborhood Safety by Resident Type

Neighborhood Safe at Night	
Intercept	4.393 (0.103)***
Gentrifier	−0.029 (0.168)
Long-term Resident	−0.302 (0.122)*
% Unemployed	−0.017 (0.163)
Age	0.008 (0.017)
Female	−0.191 (0.054)***
Renter	−0.056 (0.068)
% Black-Latino	−1.104 (0.126)***
Nonwhite	−0.014 (0.065)
R ²	0.107
Adj. R ²	0.102
Num. obs.	1419
RMSE	0.954

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table H42: DUR: Perceptions of Neighborhood Quality of Life by Resident Type

Neighborhood Quality of Life	
Intercept	4.603 (0.091)***
Gentrifier	−0.308 (0.103)**
Long-term Resident	−0.133 (0.094)
% Unemployed	−3.312 (1.213)**
Age	0.050 (0.019)**
Female	0.099 (0.049)*
Renter	−0.044 (0.059)
% Black	−1.136 (0.195)***
Nonwhite	−0.249 (0.054)***
R ²	0.162
Adj. R ²	0.156
Num. obs.	1234
RMSE	0.850

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

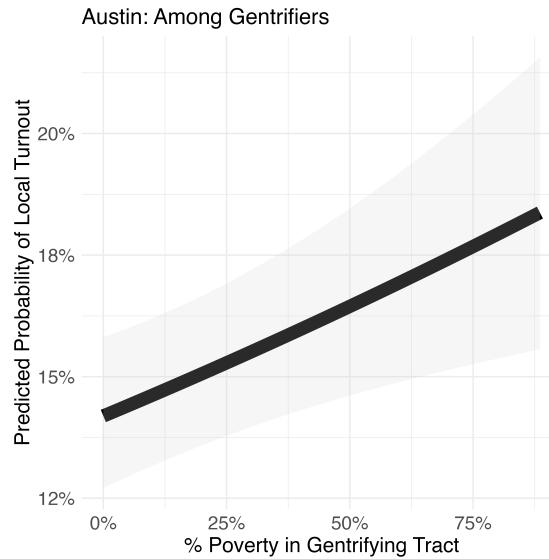
Table H43: DUR: Perceptions of Neighborhood Sidewalks by Resident Type

Neighborhood Sidewalks	
Intercept	3.250 (0.170)***
Gentrifier	-0.316 (0.142)*
Long-term Resident	-0.489 (0.148)**
% Unemployed	-6.821 (2.354)**
Age	0.048 (0.036)
Female	-0.031 (0.093)
Renter	-0.037 (0.108)
% Black	-0.080 (0.325)
Nonwhite	0.291 (0.106)**
R ²	0.078
Adj. R ²	0.067
Num. obs.	686
RMSE	1.202

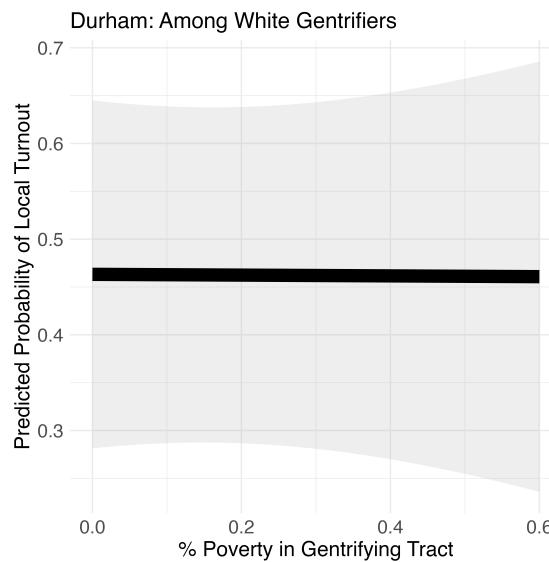
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$ **Table H44:** DUR: Perceptions of Neighborhood Streets by Resident Type

Neighborhood Streets	
Intercept	3.920 (0.116)***
Gentrifier	-0.371 (0.117)**
Long-term Resident	-0.247 (0.117)*
% Unemployed	-2.561 (1.427)
Age	-0.022 (0.025)
Female	0.015 (0.064)
Renter	-0.031 (0.075)
% Black	-0.880 (0.232)***
Nonwhite	-0.058 (0.070)
R ²	0.062
Adj. R ²	0.055
Num. obs.	1234
RMSE	1.100

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$


Table H45: DUR: Perceptions of Neighborhood Safety by Resident Type

Neighborhood Safety	
Intercept	4.442 (0.108)***
Gentrifier	-0.525 (0.117)***
Long-term Resident	-0.651 (0.113)***
% Unemployed	-2.358 (1.311)
Age	0.015 (0.023)
Female	-0.305 (0.057)***
Renter	-0.136 (0.068)*
% Black	-1.169 (0.219)***
Nonwhite	-0.215 (0.064)***
R ²	0.187
Adj. R ²	0.181
Num. obs.	1221
RMSE	0.992


*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

I Additional Moderation Analyses

I.1 % Poverty of Post-Move Tract

Figure I9: AUS: Predicted Local Turnout Conditional on % Poverty of Post-Move Tract

Figure I10: DUR: Predicted Local Turnout Conditional on % Poverty of Post-Move Tract

Table I46: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Poverty of Post-Move Tract

	Voted Local	
(Intercept)	-1.314 (0.098)***	
% Poverty	0.348 (0.117)**	
% Black-Latino	1.295 (0.199)***	
Female	0.007 (0.030)	
Age	0.008 (0.001)***	
% Unemployed	0.613 (0.442)	
Year: 2017	-0.402 (0.054)***	
Year: 2018	-2.133 (0.060)***	
Year: 2019	-0.095 (0.049)	
Year: 2020	0.360 (0.048)***	
Year: 2021	0.873 (0.048)***	
Year: 2022	-0.876 (0.050)***	
Population	-0.000 (0.000)***	
% Nonwhite	-1.955 (0.217)***	
Crime Rate	-0.000 (0.000)	
Move Year 2015	0.262 (0.055)***	
Move Year 2017	-0.501 (0.055)***	
Move Year 2018	-0.225 (0.061)***	
Move Year 2019	-0.639 (0.060)***	
Move Year 2020	-0.246 (0.080)**	
Move Year 2021	-0.802 (0.084)***	
Multi-unit Property	-0.366 (0.026)***	
Black Voter	-0.257 (0.100)**	
Latino Voter	-0.568 (0.045)***	
AIC	97232.454	
Log Likelihood	-48591.227	
Num. obs.	48	112168

Table I47: DUR: Predicted Local Turnout Among White Gentrifiers Conditional on % Poverty of Post-Move Tract

	Voted Local
% Poverty	-0.016 (0.649)
% Black	1.398 (0.722)
Female	0.099 (0.075)
Age	0.011 (0.007)
% Unemployed	2.092 (2.039)
Population	-0.000 (0.000)***
% Nonwhite	-1.940 (0.747)***
Multi-unit Property	-0.688 (0.137)***
Move Year 2017	-0.599 (0.120)***
Move Year 2018	-0.139 (0.202)
Move Year 2019	-0.774 (0.119)***
Move Year 2020	-0.685 (0.253)**
Move Year 2021	-0.964 (0.181)***
Moved from Out of County	-0.107 (0.068)
Num. obs.	5631
Num. groups: year	3
Deviance	6707.458
Log Likelihood	-3353.729
Pseudo R ²	0.060

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Crime Rate in Post-Move Tract

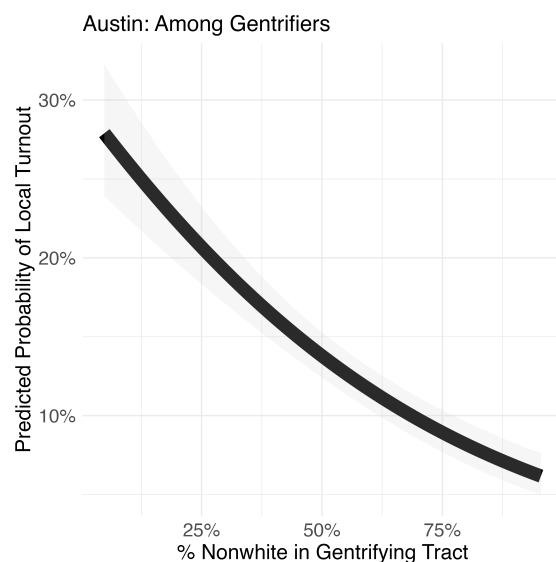
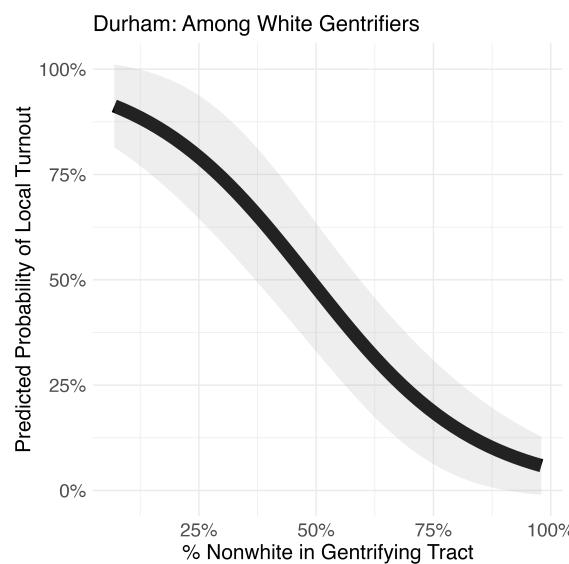


Figure I11: AUS: Predicted Local Turnout Conditional on Crime Rate in Post-Move Tract


Table I48: AUS: Predicted Local Turnout Among Gentrifiers Conditional on Crime Rate of Post-Move Tract

	Voted Local	
(Intercept)	-1.314 (0.098)***	
Crime Rate	-0.000 (0.000)	
% Poverty	0.348 (0.117)**	
% Black-Latino	1.295 (0.199)***	
Female	0.007 (0.030)	
Age	0.008 (0.001)***	
% Unemployed	0.612 (0.442)	
Year: 2017	-0.402 (0.054)***	
Year: 2018	-2.133 (0.060)***	
Year: 2019	-0.095 (0.049)	
Year: 2020	0.360 (0.048)***	
Year: 2021	0.873 (0.048)***	
Year: 2022	-0.876 (0.050)***	
Population	-0.000 (0.000)***	
% Nonwhite	-1.955 (0.217)***	
Move Year 2015	0.262 (0.055)***	
Move Year 2017	-0.501 (0.055)***	
Move Year 2018	-0.225 (0.061)***	
Move Year 2019	-0.639 (0.060)***	
Move Year 2020	-0.246 (0.080)**	
Move Year 2021	-0.802 (0.084)***	
Multi-unit Property	-0.366 (0.026)***	
Black Voter	-0.257 (0.100)**	
Latino Voter	-0.568 (0.045)***	
AIC	97232.454	
Log Likelihood	-48591.227	
Num. obs.	51	112168

% Nonwhite in Post-Move Tract

Figure I12: AUS: Predicted Local Turnout Conditional on % Nonwhite in Post-Move Tract

Figure I13: DUR: Predicted Local Turnout Conditional on % Nonwhite in Post-Move Tract

Table I49: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Nonwhite of Post-Move Tract

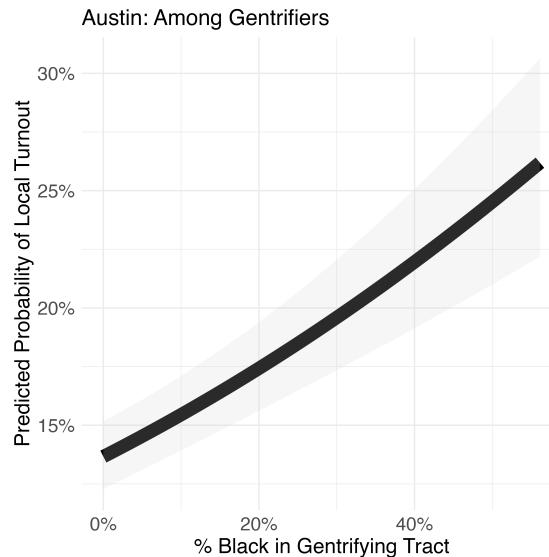

	Voted Local	
(Intercept)	-1.314 (0.098)***	
% Nonwhite	-1.955 (0.217)***	
% Poverty	0.348 (0.117)**	
Female	0.007 (0.030)	
Age	0.008 (0.001)***	
% Unemployed	0.612 (0.442)	
Year: 2017	-0.402 (0.054)***	
Year: 2018	-2.133 (0.060)***	
Year: 2019	-0.095 (0.049)	
Year: 2020	0.360 (0.048)***	
Year: 2021	0.873 (0.048)***	
Year: 2022	-0.876 (0.050)***	
Population	-0.000 (0.000)***	
% Black-Latino	1.295 (0.199)***	
Crime Rate	-0.000 (0.000)	
Move Year 2015	0.262 (0.055)***	
Move Year 2017	-0.501 (0.055)***	
Move Year 2018	-0.225 (0.061)***	
Move Year 2019	-0.639 (0.060)***	
Move Year 2020	-0.246 (0.080)**	
Move Year 2021	-0.802 (0.084)***	
Multi-unit Property	-0.366 (0.026)***	
Black Voter	-0.257 (0.100)**	
Latino Voter	-0.568 (0.045)***	
AIC	97232.454	
Log Likelihood	-48591.227	
Num. obs.	53	112168
N	112168	87065

Table I50: DUR: Predicted Local Turnout Among Gentrifiers Conditional on % Nonwhite of Post-Move Tract

	Voted Local
% Nonwhite	-5.623 (1.211)***
% Poverty	0.103 (0.076)
Female	0.009 (0.007)
Age	2.118 (2.148)
% Unemployed	0.398 (0.777)
Population	-0.000 (0.000)*
% Black-Latino	4.647 (1.020)***
Multi-unit Property	-0.624 (0.140)***
Move Year 2017	-0.602 (0.120)***
Move Year 2018	-0.140 (0.201)
Move Year 2019	-0.785 (0.119)***
Move Year 2020	-0.713 (0.248)**
Move Year 2021	-0.983 (0.186)***
Moved from Out of County	-0.109 (0.068)
Num. obs.	5631
Num. groups: year	3
Deviance	6686.957
Log Likelihood	-3343.479
Pseudo R ²	0.063

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

% Black in Post-Move Tract

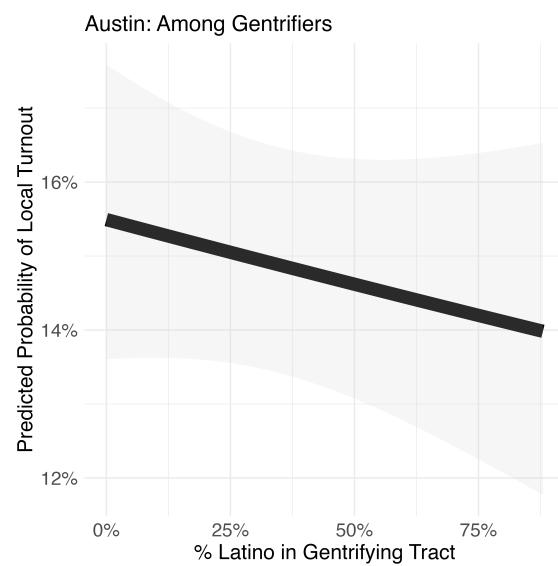


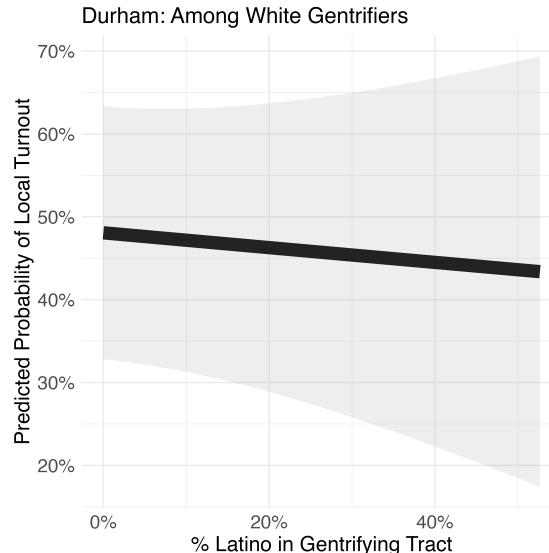
Figure I14: AUS: Predicted Local Turnout Conditional on % Black in Post-Move Tract

Table I51: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Black of Post-Move Tract

	Voted Local	
(Intercept)	-1.349 (0.098)***	
% Black	1.439 (0.189)***	
Female	0.215 (0.115)	
Age	0.005 (0.030)	
% Unemployed	0.008 (0.001)***	
% Poverty	0.764 (0.439)	
Year: 2017	-0.407 (0.054)***	
Year: 2018	-2.141 (0.061)***	
Year: 2019	-0.108 (0.049)*	
Year: 2020	0.357 (0.048)***	
Year: 2021	0.872 (0.048)***	
Year: 2022	-0.872 (0.050)***	
Population	-0.000 (0.000)***	
% Nonwhite	-0.000 (0.000)	
Crime Rate	0.260 (0.055)***	
Move Year 2015	-0.506 (0.055)***	
Move Year 2017	-0.231 (0.061)***	
Move Year 2018	-0.646 (0.060)***	
Move Year 2019	-0.250 (0.080)**	
Move Year 2020	-0.804 (0.084)***	
Move Year 2021	-0.372 (0.026)***	
Multi-unit Property	-0.265 (0.100)**	
Black Voter	-0.558 (0.045)***	
Latino Voter	-0.959 (0.083)***	
AIC	97217.870	
Log Likelihood	-48583.935	
Num. obs.	55	112168
N	1	27065

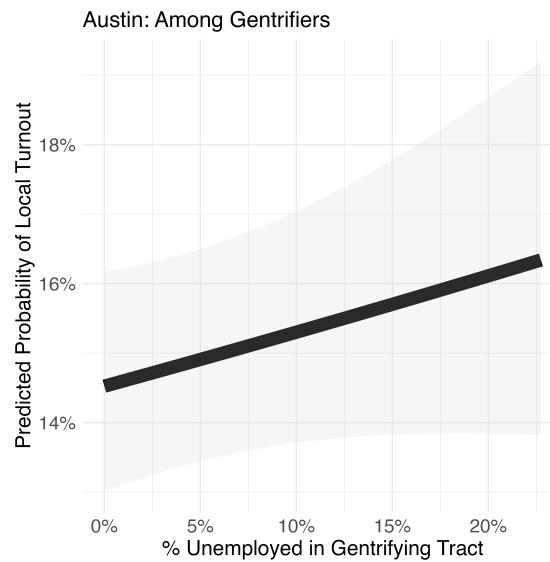
% Latino in Post-Move Tract

Figure I15: AUS: Predicted Local Turnout Conditional on % Latino in Post-Move Tract


Table I52: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Latino of Post-Move Tract

	Voted Local	
(Intercept)	-1.375 (0.098)***	
% Latino	-0.137 (0.145)	
% Poverty	0.210 (0.115)	
Female	0.006 (0.030)	
Age	0.008 (0.001)***	
% Unemployed	0.961 (0.439)*	
Year: 2017	-0.404 (0.054)***	
Year: 2018	-2.132 (0.060)***	
Year: 2019	-0.096 (0.049)	
Year: 2020	0.356 (0.048)***	
Year: 2021	0.867 (0.048)***	
Year: 2022	-0.875 (0.050)***	
Population	-0.000 (0.000)***	
% Nonwhite	-0.507 (0.135)***	
Crime Rate	-0.000 (0.000)	
Move Year 2015	0.262 (0.055)***	
Move Year 2017	-0.505 (0.055)***	
Move Year 2018	-0.231 (0.061)***	
Move Year 2019	-0.646 (0.060)***	
Move Year 2020	-0.252 (0.080)**	
Move Year 2021	-0.806 (0.084)***	
Multi-unit Property	-0.378 (0.026)***	
Black Voter	-0.258 (0.100)**	
Latino Voter	-0.562 (0.045)***	
AIC	97274.634	
Log Likelihood	-48612.317	
Num. obs.	57	112168

Table I53: DUR: Predicted Local Turnout Among Gentrifiers Conditional on % Latino of Post-Move Tract

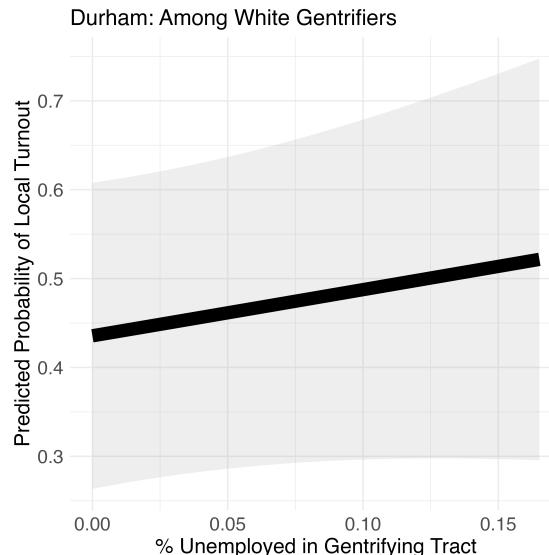

	Voted Local
% Latino	-0.359 (0.813)
% Poverty	0.099 (0.075)
Female	0.010 (0.007)
Age	3.242 (2.122)
% Unemployed	-0.390 (0.805)
Population	-0.000 (0.000)**
% Nonwhite	-0.737 (0.351)*
Multi-unit Property	-0.713 (0.143)***
Move Year 2017	-0.612 (0.119)***
Move Year 2018	-0.141 (0.201)
Move Year 2019	-0.778 (0.118)***
Move Year 2020	-0.682 (0.252)**
Move Year 2021	-0.968 (0.182)***
Moved from Out of County	-0.112 (0.068)
Num. obs.	5631
Num. groups: year	3
Deviance	6720.079
Log Likelihood	-3360.039
Pseudo R ²	0.059

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure I16: DUR: Predicted Local Turnout Conditional on % Latino in Post-Move Tract

% Unemployed in Post-Move Tract

Figure I17: AUS: Predicted Local Turnout Conditional on % Unemployed in Post-Move Tract


Table I54: AUS: Predicted Local Turnout Among Gentrifiers Conditional on % Unemployed of Post-Move Tract

	Voted Local	
(Intercept)	-1.314 (0.098)***	
% Unemployed	0.613 (0.442)	
Crime Rate	-0.000 (0.000)	
% Poverty	0.348 (0.117)**	
% Black-Latino	1.295 (0.199)***	
Female	0.007 (0.030)	
Age	0.008 (0.001)***	
Year: 2017	-0.402 (0.054)***	
Year: 2018	-2.133 (0.060)***	
Year: 2019	-0.095 (0.049)	
Year: 2020	0.360 (0.048)***	
Year: 2021	0.873 (0.048)***	
Year: 2022	-0.876 (0.050)***	
Population	-0.000 (0.000)***	
% Nonwhite	-1.955 (0.217)***	
Move Year 2015	0.262 (0.055)***	
Move Year 2017	-0.501 (0.055)***	
Move Year 2018	-0.225 (0.061)***	
Move Year 2019	-0.639 (0.060)***	
Move Year 2020	-0.246 (0.080)**	
Move Year 2021	-0.802 (0.084)***	
Multi-unit Property	-0.366 (0.026)***	
Black Voter	-0.257 (0.100)**	
Latino Voter	-0.568 (0.045)***	
AIC	97232.454	
Log Likelihood	-48591.227	
Num. obs.	60	112168

Table I55: DUR: Predicted Local Turnout Among White Gentrifiers Conditional on % Unemployed in Post-Move Tract

	Voted Local
% Unemployed	2.092 (2.039)
% Poverty	-0.016 (0.649)
% Black	1.398 (0.722)
Female	0.099 (0.075)
Age	0.011 (0.007)
Population	-0.000 (0.000)**
% Nonwhite	-1.940 (0.747)**
Multi-unit Property	-0.688 (0.137)***
Move Year 2017	-0.599 (0.120)***
Move Year 2018	-0.139 (0.202)
Move Year 2019	-0.774 (0.119)***
Move Year 2020	-0.685 (0.253)**
Move Year 2021	-0.964 (0.181)***
Moved from Out of County	-0.107 (0.068)
Num. obs.	5631
Num. groups: year	3
Deviance	6707.458
Log Likelihood	-3353.729
Pseudo R ²	0.060

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure I18: DUR: Predicted Local Turnout Conditional on % Unemployed in Post-Move Tract

J Federal Elections

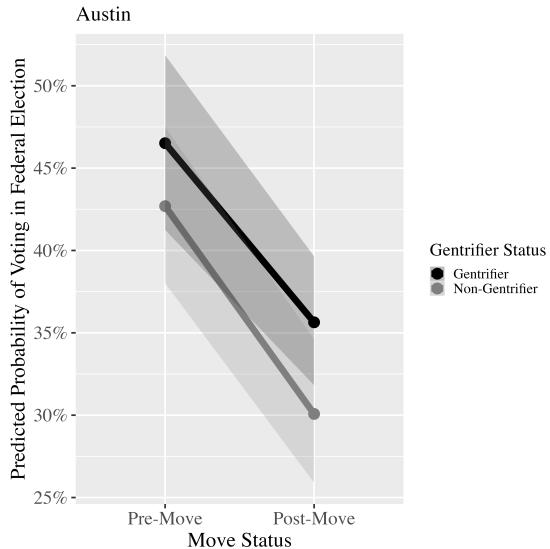


Figure J19: AUS: Marginal Effects of Gentrifier Status on Voting in a Federal Election

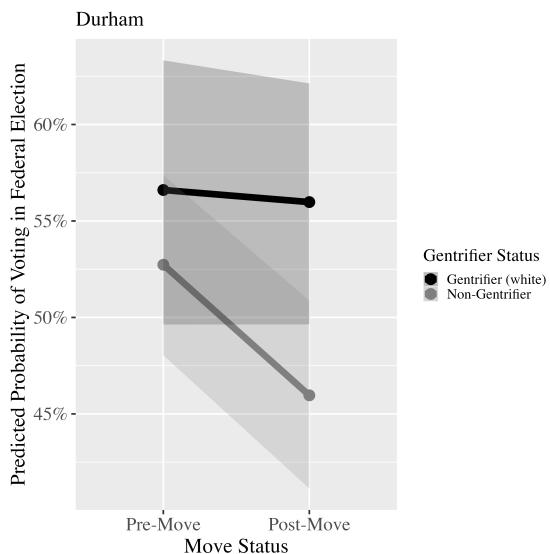
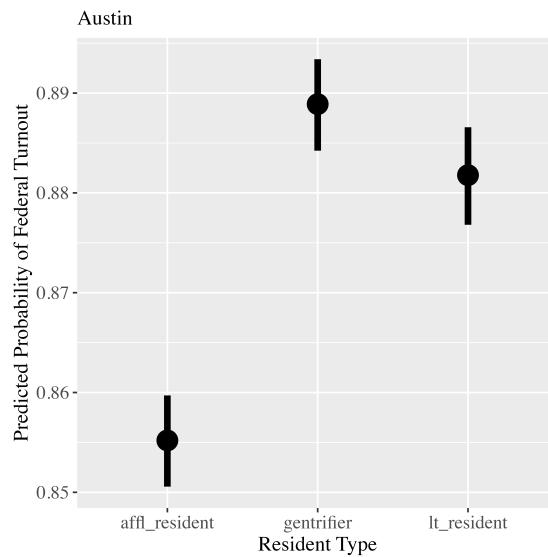


Figure J20: DUR: Marginal Effects of Gentrifier (white) Status on Voting in a Federal Election

Table J56: AUS: Marginal Effects of Gentrifier Status on Voting in a Federal Election


	Voted Federal
Gentrifier	0.155 (0.026)***
Post-Move	-0.549 (0.069)***
Female	0.118 (0.015)***
Age	0.010 (0.001)***
% Unemployed	0.555 (0.582)
Black Voter	-0.321 (0.048)***
Latino Voter	-0.269 (0.030)***
Multi-unit Property	-0.316 (0.043)***
% Nonwhite	-0.928 (0.117)***
% Poverty	-0.454 (0.120)***
Crime Rate	-0.000 (0.000)
Move Year 2015	0.258 (0.033)***
Move Year 2017	-0.075 (0.029)**
Move Year 2018	-0.516 (0.046)***
Move Year 2019	-0.164 (0.032)***
Move Year 2020	-0.554 (0.055)***
Move Year 2021	-0.674 (0.045)***
Move Year 2022	-1.015 (0.078)***
Population	-0.000 (0.000)*
Gentrifier \times Post-Move	0.098 (0.060)
Num. obs.	246996
Num. groups: year	4
Deviance	259087.029
Log Likelihood	-129543.515
Pseudo R ²	0.065

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table J57: Marginal Effects of Gentrifier Status on Voting in a Federal Election

	Voted Federal
Gentrifier	0.156 (0.106)
Post-Move	−0.271 (0.053)***
Female	0.245 (0.034)***
Age	0.023 (0.001)***
% Unemployed	−0.919 (0.866)
Black Voter	−0.489 (0.064)***
Latino Voter	−0.530 (0.078)***
Multi-Unit Prop.	−0.418 (0.052)***
% Nonwhite	−0.806 (0.181)***
% Poverty	−0.589 (0.303)
Move Year 2017	−0.107 (0.055)
Move Year 2018	0.120 (0.075)
Move Year 2019	−0.019 (0.073)
Move Year 2020	−0.194 (0.075)*
Move Year 2021	−0.404 (0.068)***
Move Year 2022	−0.113 (0.097)
Moved From Out of County	0.060 (0.047)
Population	0.000 (0.000)
Gentrifier*Post-Move	0.246 (0.120)*
Num. obs.	52904
Num. groups: year	4
Deviance	54219.379
Log Likelihood	−27109.690
Pseudo R ²	0.134

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

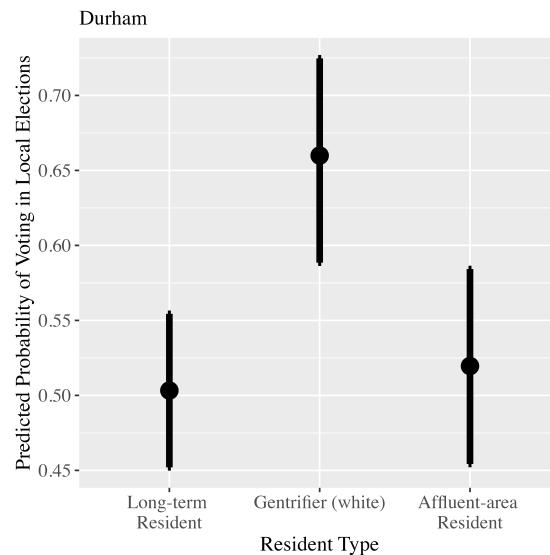


Figure J21: AUS: Predicted Probability of Voting in a Federal Election by Resident Type

Table J58: AUS: Predicted Probability of Voting in a Federal Election by Resident Type

Voted Federal	
(Intercept)	-241.679 (5.099)***
Affluent-Area Resident	-0.106 (0.225)
Gentrifier	0.206 (0.225)
Post-Move	-0.528 (0.014)***
Female	0.130 (0.012)***
Age	0.018 (0.000)***
% Unemployed	-4.149 (0.166)***
% Nonwhite	-0.944 (0.030)***
% Poverty	0.049 (0.039)
Year	0.121 (0.003)***
Population	-0.000 (0.000)***
Crime Rate	-0.000 (0.000)***
Move Year 2015	0.590 (0.025)***
Move Year 2017	-0.181 (0.023)***
Move Year 2018	-0.531 (0.024)***
Move Year 2019	-0.051 (0.025)*
Move Year 2020	-0.511 (0.030)***
Move Year 2021	-0.774 (0.025)***
Move Year 2022	-1.154 (0.034)***
Multi-unit Property	-0.382 (0.011)***
Black Voter	-0.376 (0.016)***
Latino Voter	-0.333 (0.037)***
AIC	524113.964
Log Likelihood	-262033.982
Num. obs.	502893
Num. groups: vuid	160462
Var: vuid (Intercept)	2.413

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure J22: DUR: Predicted Probability of Voting in a Federal Election by Resident Type

Table J59: DUR: Predicted Probability of Voting in a Federal Election by Resident Type

	Voted Federal
Affluent-area Resident	0.065 (0.099)
Gentrifier	0.650 (0.092)***
Post-Move	-0.410 (0.047)***
Female	0.208 (0.020)***
Age	0.022 (0.001)***
% Unemployed	-0.956 (0.892)
% Nonwhite	-0.507 (0.166)**
% Poverty	-1.193 (0.391)**
Move Year 2017	-0.157 (0.041)***
Move Year 2018	0.031 (0.046)
Move Year 2019	-0.039 (0.047)
Move Year 2020	-0.143 (0.046)**
Move Year 2021	-0.374 (0.048)***
Move Year 2022	-0.029 (0.084)
Population	0.000 (0.000)
Latino Voter	-0.472 (0.040)***
Black Voter	-0.334 (0.057)***
Moved from Out of County	0.007 (0.035)
Multi-unit Prop.	-0.486 (0.049)***
Num. obs.	183361
Num. groups: year	4
Deviance	185208.995
Log Likelihood	-92604.498
Pseudo R ²	0.128

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

K Move Year Window

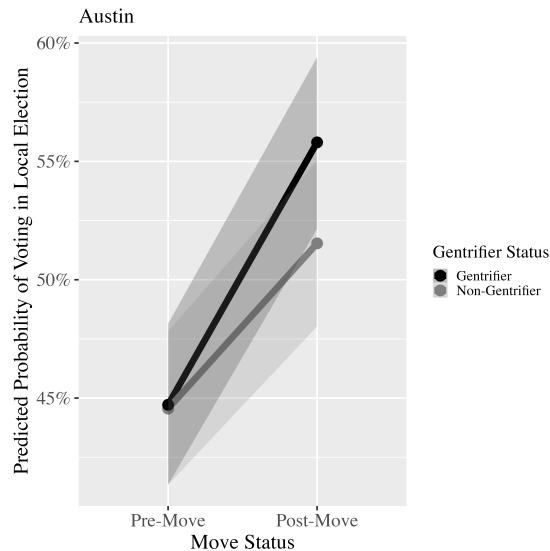


Figure K23: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election (Move Year Window)

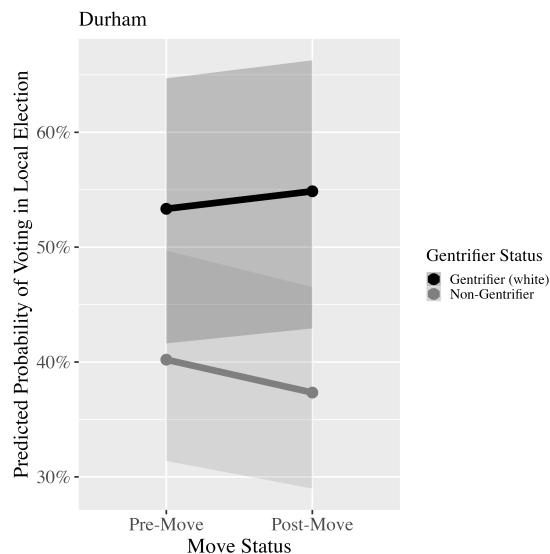


Figure K24: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Move Year Window)

Table K60: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election

	Voted Local
Gentrifier	0.007 (0.025)
Post-Move	0.280 (0.025)***
Female	0.011 (0.016)
Age	0.018 (0.001)***
% Unemployed	0.836 (0.642)
Black Voter	-0.252 (0.057)***
Latino Voter	-0.381 (0.033)***
Multi-unit Property	-0.335 (0.029)***
% Nonwhite	-0.922 (0.116)***
% Poverty	-0.184 (0.179)
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)
Gentrifier \times Post-Move	0.165 (0.036)***
Num. obs.	340296
Num. groups: year	8
Deviance	275159.707
Log Likelihood	-137579.854
Pseudo R ²	0.088

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table K61: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election

	Voted Local
Gentrifier (white)	0.531 (0.124)***
post-move	−0.121 (0.064)
Female	0.080 (0.040)*
Age	0.018 (0.002)***
% Unemployed	−0.446 (1.401)
Black Voter	−0.134 (0.097)
Latino Voter	−0.580 (0.145)***
Multi-unit Property	−0.452 (0.068)***
% Nonwhite	−0.695 (0.232)**
% Poverty	0.142 (0.404)
Moved from Out of County	0.026 (0.051)
Population	−0.000 (0.000)***
Gentrifier (white) × post-move	0.182 (0.112)
Num. obs.	33214
Num. groups: year	4
Deviance	31162.763
Log Likelihood	−15581.381
Pseudo R ²	0.064

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

L Homeowner vs. Renter

L.1 Homeowners

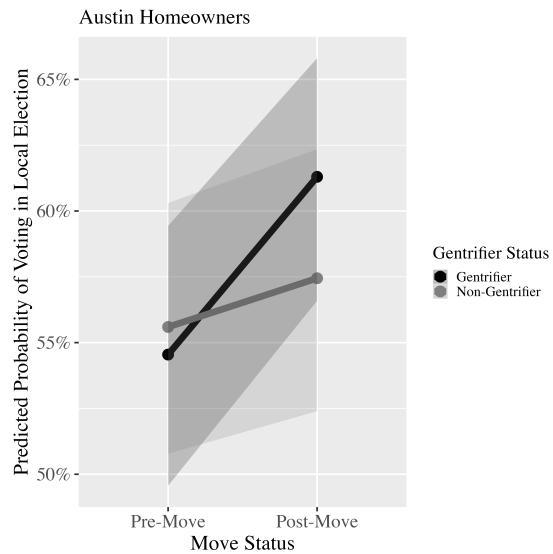


Figure L25: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election (Homeowners)

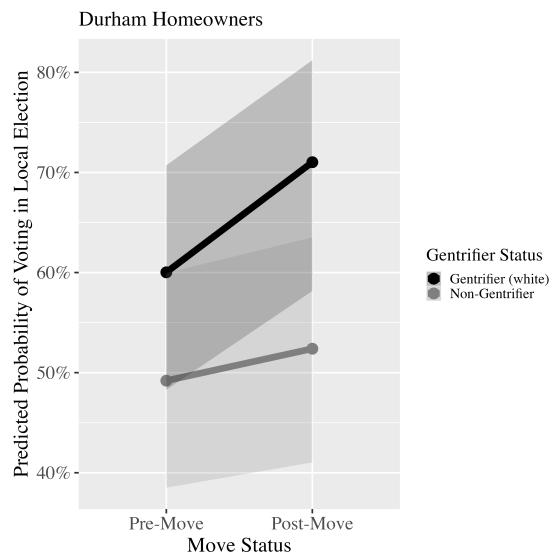
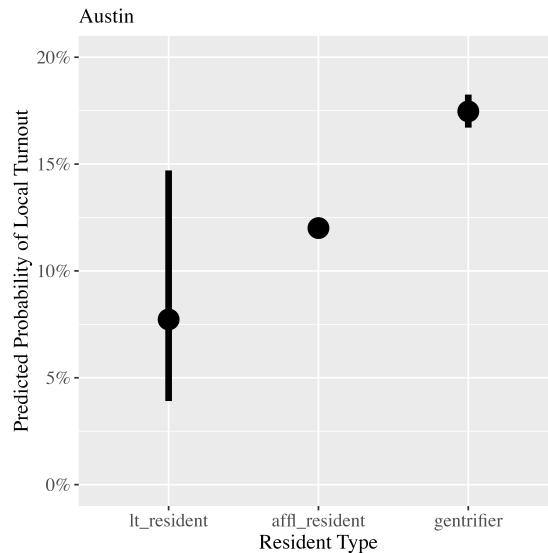
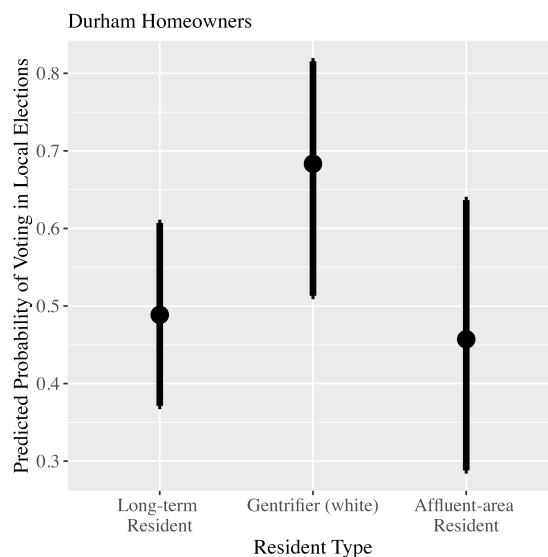


Figure L26: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Homeowners)

Table L62: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election (Homeowners)


	Voted Local
Gentrifier	-0.042 (0.030)
Post-Move	0.075 (0.023)**
Female	0.051 (0.016)**
Age	0.020 (0.001)***
% Unemployed	0.870 (0.706)
Black Voter	-0.211 (0.065)**
Latino Voter	-0.475 (0.038)***
% Nonwhite	-0.819 (0.134)***
% Poverty	0.217 (0.256)
Move Year 2015	0.070 (0.033)*
Move Year 2017	-0.482 (0.035)***
Move Year 2018	-0.183 (0.040)***
Move Year 2019	-0.435 (0.039)***
Move Year 2020	-0.046 (0.051)
Move Year 2021	-0.700 (0.046)***
Move Year 2022	-0.275 (0.059)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.001)
Gentrifier \times Post-Move	0.202 (0.036)***
Num. obs.	251801
Num. groups: year	8
Deviance	222821.783
Log Likelihood	-111410.891
Pseudo R ²	0.086

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$


Table L63: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Homeowners)

	Voted Local
Gentrifier	0.438 (0.106)***
Post-Move	0.128 (0.055)*
Female	0.117 (0.042)**
Age	0.020 (0.002)***
% Unemployed	-1.353 (1.598)
Black Voter	-0.111 (0.110)
Latino Voter	-0.565 (0.117)***
% Nonwhite	-0.391 (0.261)
% Poverty	0.338 (0.505)
Move Year 2017	-0.678 (0.075)***
Move Year 2018	-0.000 (0.086)
Move Year 2019	-0.573 (0.077)***
Move Year 2020	-0.202 (0.094)*
Move Year 2021	-0.804 (0.088)***
Move Year 2022	0.223 (0.125)
Moved From Out of County	-0.099 (0.056)
Population	-0.000 (0.000)***
Gentrifier*Post-Move	0.362 (0.116)**
Num. obs.	34079
Num. groups: year	4
Deviance	32638.278
Log Likelihood	-16319.139
Pseudo R ²	0.074

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure L27: AUS: Predicted Probability of Voting in a Local Election by Resident Type (Homeowners))

Figure L28: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Homeowners)

Table L64: AUS: Predicted Probability of Voting in a Local Election by Resident Type (Homeowners)

	Voted Local
(Intercept)	-140.706 (5.314)***
Affluent-area Resident	0.488 (0.368)
Gentrifier	0.927 (0.368)*
Post-Move	0.190 (0.015)***
Female	0.043 (0.013)**
Age	0.027 (0.001)***
% Unemployed	1.745 (0.194)***
% Nonwhite	-1.365 (0.035)***
% Poverty	-0.572 (0.070)***
year	0.068 (0.003)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)***
Move Year 2015	0.108 (0.026)***
Move Year 2017	-0.516 (0.025)***
Move Year 2018	-0.116 (0.026)***
Move Year 2019	-0.349 (0.028)***
Move Year 2020	0.101 (0.034)**
Move Year 2021	-0.791 (0.030)***
Move Year 2022	-0.272 (0.041)***
Latino Voter	-0.589 (0.021)***
Black Voter	-0.225 (0.046)***
AIC	483263.311
Log Likelihood	-241609.655
Num. obs.	565363
Num. groups: vuid	112694
Var: vuid (Intercept)	2.347

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table L65: DUR: Predicted Probability of Voting in a Local Election by Resident Type (Homeowners)

	Voted Local
Affluent-area Resident	−0.126 (0.280)
Gentrifier	0.815 (0.234)***
Post-Move	0.180 (0.040)***
Female	0.163 (0.020)***
Age	0.020 (0.002)***
% Unemployed	−1.651 (2.045)
% Nonwhite	−0.517 (0.312)
% Poverty	0.674 (0.696)
Move Year 2017	−0.564 (0.043)***
Move Year 2018	0.063 (0.050)
Move Year 2019	−0.392 (0.051)***
Move Year 2020	−0.163 (0.059)**
Move Year 2021	−0.739 (0.059)***
Move Year 2022	0.163 (0.096)
Population	−0.086 (0.029)**
Latino Voter	−0.476 (0.086)***
Black Voter	0.193 (0.101)
Moved from Out of County	−0.229 (0.045)***
Num. obs.	126057
Num. groups: year	4
Deviance	115448.533
Log Likelihood	−57724.266
Pseudo R ²	0.059

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

L.2 Renters

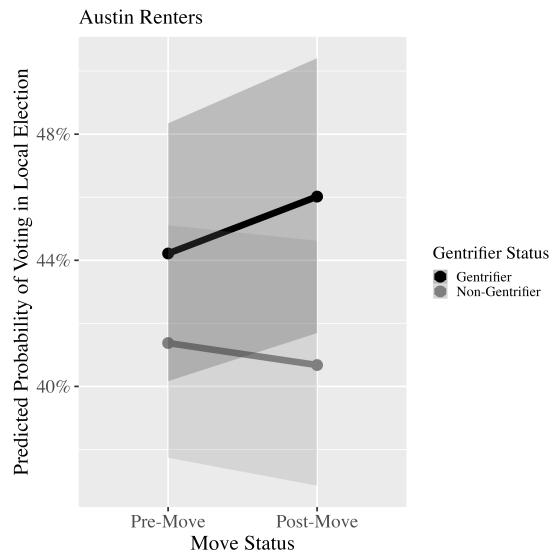
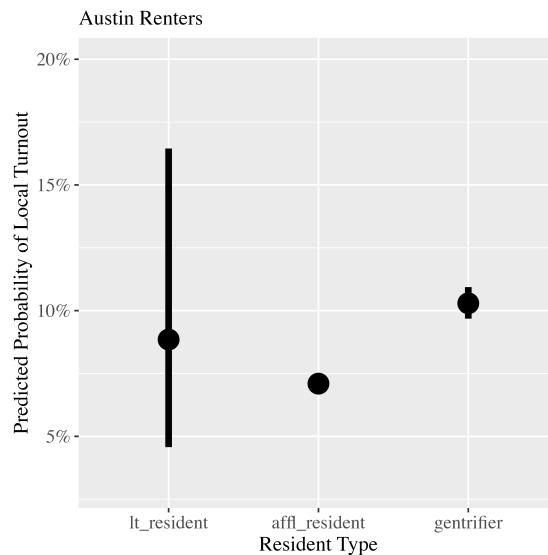


Figure L29: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election (Renters)

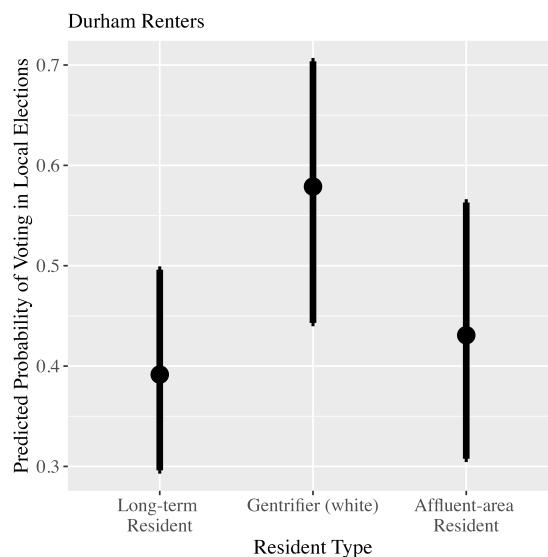


Figure L30: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Renters)

Table L66: AUS: Marginal Effects of Gentrifier Status on Voting in a Local Election (Renters)


	Voted Local
Gentrifier	0.116 (0.032)***
Post-Move	-0.029 (0.034)
Female	-0.037 (0.018)*
Age	0.013 (0.001)***
% Unemployed	0.195 (0.814)
Black Voter	-0.086 (0.060)
Latino Voter	-0.312 (0.031)***
% Nonwhite	-1.066 (0.150)***
% Poverty	-0.307 (0.181)
Move Year 2015	0.105 (0.042)*
Move Year 2017	-0.491 (0.040)***
Move Year 2018	-0.197 (0.048)***
Move Year 2019	-0.548 (0.040)***
Move Year 2020	0.026 (0.048)
Move Year 2021	-0.783 (0.049)***
Move Year 2022	-0.364 (0.079)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)
Gentrifier \times Post-Move	0.102 (0.047)*
Num. obs.	233937
Num. groups: year	8
Deviance	172340.880
Log Likelihood	-86170.440
Pseudo R ²	0.088

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$


Table L67: DUR: Marginal Effects of Gentrifier Status on Voting in a Local Election (Renters)

	Voted Local
Gentrifier	0.459 (0.195)*
Post-Move	0.123 (0.079)
Female	0.106 (0.070)
Age	0.023 (0.002)***
% Unemployed	-0.131 (1.192)
Black Voter	-0.018 (0.120)
Latino Voter	-0.453 (0.195)*
% Nonwhite	-1.360 (0.292)***
% Poverty	0.045 (0.392)
Move Year 2017	-0.439 (0.088)***
Move Year 2018	0.445 (0.110)***
Move Year 2019	-0.308 (0.119)**
Move Year 2020	0.010 (0.130)
Move Year 2021	-0.731 (0.121)***
Move Year 2022	0.194 (0.281)
Moved From Out of County	0.128 (0.081)
Population	-0.000 (0.000)**
Gentrifier*Post-Move	-0.018 (0.189)
Num. obs.	14641
Num. groups: year	4
Deviance	11174.996
Log Likelihood	-5587.498
Pseudo R ²	0.079

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure L31: AUS: Predicted Probability of Voting in a Local Election by Resident Type (Renters)

Figure L32: DUR: Predicted Probability of Voting in a Local Election by Resident Type (Renters)

Table L68: AUS: Predicted Probability of Voting in a Local Election by Resident Type (Renters)

	Voted Local
(Intercept)	-221.325 (8.471)***
Affluent-area Resident	-0.240 (0.360)
Gentrifier	0.167 (0.360)
Post-Move	-0.036 (0.021)
Female	-0.066 (0.018)***
Age	0.021 (0.001)***
% Unemployed	-0.383 (0.265)
% Nonwhite	-1.368 (0.054)***
% Poverty	-0.317 (0.056)***
year	0.109 (0.004)***
Population	-0.000 (0.000)***
Crime Rate	0.000 (0.000)***
Move Year 2015	0.177 (0.037)***
Move Year 2017	-0.581 (0.036)***
Move Year 2018	-0.279 (0.038)***
Move Year 2019	-0.517 (0.037)***
Move Year 2020	0.134 (0.043)**
Move Year 2021	-0.935 (0.041)***
Move Year 2022	-0.704 (0.055)***
Latino Voter	-0.431 (0.026)***
Black Voter	-0.320 (0.058)***
AIC	251977.752
Log Likelihood	-125966.876
Num. obs.	352320
Num. groups: vuid	94169
Var: vuid (Intercept)	2.970

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table L69: DUR: Predicted Probability of Voting in a Local Election by Resident Type (Renters)

	Voted Local
Affluent-area Resident	0.162 (0.203)
Gentrifier	0.759 (0.176)***
Post-Move	0.089 (0.069)
Female	0.169 (0.043)***
Age	0.023 (0.002)***
% Unemployed	-1.769 (1.323)
% Nonwhite	-0.691 (0.236)**
% Poverty	0.172 (0.728)
Move Year 2017	-0.630 (0.066)***
Move Year 2018	0.095 (0.107)
Move Year 2019	-0.498 (0.090)***
Move Year 2020	-0.067 (0.074)
Move Year 2021	-0.839 (0.088)***
Move Year 2022	0.132 (0.160)
Population	-0.099 (0.035)**
Latino Voter	-0.360 (0.090)***
Black Voter	0.070 (0.085)
Moved from Out of County	-0.167 (0.073)*
Num. obs.	37987
Num. groups: year	4
Deviance	27764.984
Log Likelihood	-13882.492
Pseudo R ²	0.073

*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$